Aufgaben:Aufgabe 4.10Z: Korrelationsdauer: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID393__Sto_Z_4_10.png|right|frame|Musterfunktionen ergodischer Prozesse]]
 
[[Datei:P_ID393__Sto_Z_4_10.png|right|frame|Musterfunktionen ergodischer Prozesse]]
Das nebenstehende Bild zeigt Mustersignale zweier Zufallsprozesse $\{x_i(t)\}$ und $\{y_i(t)\}$  mit jeweils gleicher Leistung  $P_x = P_y =  5\hspace{0.05 cm} \rm mW$. Vorausgesetzt ist hierbei der Widerstand $R = 50\hspace{0.05 cm}\rm  \Omega$.  
+
Das nebenstehende Bild zeigt Mustersignale zweier Zufallsprozesse  $\{x_i(t)\}$  und  $\{y_i(t)\}$  mit jeweils gleicher Leistung  $P_x = P_y =  5\hspace{0.05 cm} \rm mW$.  Vorausgesetzt ist hierbei der Widerstand  $R = 50\hspace{0.05 cm}\rm  \Omega$.  
  
  
Der Zufallsprozess $\{x_i(t)\}$
+
Der Zufallsprozess  $\{x_i(t)\}$
* ist mittelwertfrei $(m_x = 0)$,
+
* ist mittelwertfrei  $(m_x = 0)$,
* besitzt die gaußförmige AKF   $\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$
+
* besitzt die gaußförmige AKF   $\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$  und
* und weist die äquivalente AKF-Dauer $\nabla \tau_x = 5\hspace{0.05 cm}\rm µ s $ auf.
+
* weist die äquivalente AKF-Dauer  $\nabla \tau_x = 5\hspace{0.05 cm}\rm µ s $  auf.
  
  
Wie aus dem unteren Bild zu erkennen ist, hat der Zufallsprozess $\{y_i(t)\}$ sehr viel stärkere innere statistische Bindungen als der Zufallsprozess $\{x_i(t)\}$.
+
Wie aus dem unteren Bild zu erkennen ist, hat der Zufallsprozess  $\{y_i(t)\}$  sehr viel stärkere innere statistische Bindungen als der Zufallsprozess  $\{x_i(t)\}$.
  
 
Oder anders ausgedrückt:  
 
Oder anders ausgedrückt:  
*Der Zufallsprozess $\{y_i(t)\}$  ist niederfrequenter als  $\{x_i(t)\}$.  
+
*Der Zufallsprozess  $\{y_i(t)\}$  ist niederfrequenter als  $\{x_i(t)\}$.  
*Die äquivalente AKF-Dauer ist $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.
+
*Die äquivalente AKF-Dauer ist  $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.
  
  
Aus der Skizze ist auch zu erkennen, dass $\{y_i(t)\}$ im Gegensatz zu $\{x_i(t)\}$ nicht gleichsignalfrei ist.  
+
Aus der Skizze ist auch zu erkennen, dass  $\{y_i(t)\}$  im Gegensatz zu  $\{x_i(t)\}$  nicht gleichsignalfrei ist.  Der Gleichsignalanteil beträgt vielmehr  $m_y = -0.3 \hspace{0.05 cm}\rm V$.
  
Der Gleichsignalanteil beträgt vielmehr $m_y = -0.3 \hspace{0.05 cm}\rm V$.
 
  
  
  
  
 
+
'''Hinweise:'''  
''Hinweise:''  
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
+
*Bezug genommen wird insbesondere auf die Seite  [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Interpretation_der_Autokorrelationsfunktion|Interpretation der Autokorrelationsfunktion]].
*Bezug genommen wird insbesondere auf die Seite [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Interpretation_der_Autokorrelationsfunktion|Interpretation der Autokorrelationsfunktion]].
 
 
   
 
   
  
Zeile 39: Zeile 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Effektivwert $(\sigma_x)$ besitzen die Mustersignale des Prozesses $\{x_i(t)\}$?
+
{Welchen Effektivwert&nbsp; $(\sigma_x)$&nbsp; besitzen die Mustersignale des Prozesses&nbsp; $\{x_i(t)\}$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_x \ = \ $ { 0.5 3% } $\ \rm V$
 
$\sigma_x \ = \ $ { 0.5 3% } $\ \rm V$
  
  
{Welche AKF&micro;Werte ergeben sich f&uuml;r $\tau = 2\hspace{0.05 cm}\rm &micro;s$ &nbsp;bzw.&nbsp; $\tau = 5\hspace{0.05 cm}\rm &micro; s$?
+
{Welche AKF&ndash;Werte ergeben sich f&uuml;r&nbsp; $\tau = 2\hspace{0.05 cm}\rm &micro;s$ &nbsp;bzw.&nbsp; $\tau = 5\hspace{0.05 cm}\rm &micro; s$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm &micro; s})  \ =  \ $ { 3.025 3% } $\ \rm mW$
 
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm &micro; s})  \ =  \ $ { 3.025 3% } $\ \rm mW$
Zeile 50: Zeile 48:
  
  
{Wie gro&szlig; ist die Korrelationsdauer $T_{\rm K}$, also derjenige Zeitpunkt, bei dem die AKF auf die H&auml;lfte des Maximums abgefallen ist?
+
{Wie gro&szlig; ist die Korrelationsdauer&nbsp; $T_{\rm K}$,&nbsp; also derjenige Zeitpunkt,&nbsp; bei dem die AKF auf die H&auml;lfte des Maximums abgefallen ist?
 
|type="{}"}
 
|type="{}"}
 
$T_{\rm K}  \ =  \ $ { 2.35 3% } $\ \rm &micro; s$
 
$T_{\rm K}  \ =  \ $ { 2.35 3% } $\ \rm &micro; s$
  
  
{Welchen Effektivwert $(\sigma_y)$ besitzen die Mustersignale des Prozesses $\{y_i(t)\}$?
+
{Welchen Effektivwert&nbsp; $(\sigma_y)$&nbsp; besitzen die Mustersignale des Prozesses $\{y_i(t)\}$?
 
|type="{}"}
 
|type="{}"}
 
$\sigma_y \ =  \ $ { 0.4 3% } $\ \rm V$
 
$\sigma_y \ =  \ $ { 0.4 3% } $\ \rm V$
  
  
{Berechnen Sie die AKF $\varphi_x(\tau)$. Wie groß ist der AKF-Wert bei $\tau = 10\hspace{0.05 cm}\rm &micro; s$? <br>Welcher AKF&ndash;Verlauf ergäbe sich bei positivem Mittelwert $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?
+
{Berechnen Sie die AKF&nbsp; $\varphi_x(\tau)$.&nbsp; Wie groß ist der AKF-Wert bei&nbsp; $\tau = 10\hspace{0.05 cm}\rm &micro; s$?&nbsp; Welcher AKF&ndash;Verlauf ergäbe sich bei positivem Mittelwert&nbsp; $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?
 
|type="{}"}
 
|type="{}"}
 
$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm &micro; s})  \ =  \ $ { 1.938 3% } $\ \rm mW$
 
$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm &micro; s})  \ =  \ $ { 1.938 3% } $\ \rm mW$
Zeile 70: Zeile 68:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Der quadratische Mittelwert ergibt sich zu $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2$ Daraus folgt der Effektivwert $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.
+
'''(1)'''&nbsp; Das zweite Moment ergibt sich zu&nbsp; $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$  
 +
*Daraus folgt der Effektivwert&nbsp; $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.
  
  
'''(2)'''&nbsp; Wegen $P_x = \varphi_x (\tau = 0)$  gilt f&uuml;r die AKF allgemein:  
+
 
 +
'''(2)'''&nbsp; Wegen&nbsp; $P_x = \varphi_x (\tau = 0)$&nbsp; gilt f&uuml;r die AKF allgemein:  
 
:$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
 
:$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
 
*Daraus erh&auml;lt man:
 
*Daraus erh&auml;lt man:
 
:$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} &micro; s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
 
:$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} &micro; s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
 
:$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm &micro; s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$
 
:$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm &micro; s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$
 +
  
  
Zeile 84: Zeile 85:
 
:$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$
 
:$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$
  
Daraus folgt $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm &micro; s}}$. Bei anderer AKF-Form erhält man ein anderes Verhältnis für $T_{\rm K} / {\rm \nabla} \tau_x$.
+
*Daraus folgt&nbsp; $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm &micro; s}}$.  
 +
*Bei anderer AKF-Form erhält man ein anderes Verhältnis für&nbsp; $T_{\rm K} / {\rm \nabla} \tau_x$.
 +
 
  
  
'''(4)'''&nbsp; Wegen $P_x = P_y$ sind die quadratischen Mittelwerte von $x$ und $y$ gleich, und zwar jeweils $0.25\hspace{0.05 cm}\rm V^2$. Unter Ber&uuml;cksichtigung des Mittelwertes $m_y = -0.3 \hspace{0.05 cm}\rm V$ gilt:
+
 
$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$ Daraus folgt  
+
'''(4)'''&nbsp; Die Leistungen&nbsp; $P_x = P_y$&nbsp; sind gleich,&nbsp; und zwar jeweils&nbsp; $0.25\hspace{0.05 cm}\rm V^2$.  
 +
*Unter Ber&uuml;cksichtigung des Mittelwertes&nbsp; $m_y = -0.3 \hspace{0.05 cm}\rm V$&nbsp; gilt:
 +
:$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$
 +
*Daraus folgt:
 
:$$\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}.$$
 
:$$\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}.$$
  
  
'''(5)'''&nbsp; Bezogen auf den Einheitswiderstand $ R = 1 \hspace{0.05 cm}{\rm \Omega}$ lautet die AKF des Prozesses $\{y_i(t)\}$:
+
 
 +
'''(5)'''&nbsp; Bezogen auf den Einheitswiderstand&nbsp; $ R = 1 \hspace{0.05 cm}{\rm \Omega}$&nbsp; lautet die AKF des Prozesses&nbsp; $\{y_i(t)\}$:
 
:$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
 
:$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
  
Rechts sehen Sie den Funktionsverlauf. Bezogen auf den Widerstand $ R = 50 \hspace{0.05 cm}{\rm \Omega}$ ergeben sich die nachfolgend angegebenen AKF-Werte:
+
*Rechts sehen Sie den Funktionsverlauf.&nbsp; Bezogen auf den Widerstand&nbsp; $ R = 50 \hspace{0.05 cm}{\rm \Omega}$&nbsp; ergeben sich die nachfolgend angegebenen AKF-Werte:
 
:$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
 
:$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
  
Daraus folgt:
+
*Daraus folgt:
 
:$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm &micro; s})
 
:$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm &micro; s})
 
\hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm  mW}.$$
 
\hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm  mW}.$$
  
Bei positivem Mittelwert $m_y$ (mit gleichem Betrag) w&uuml;rde sich an der AKF nichts &auml;ndern, da $m_y$ in die AKF-Gleichung quadratisch eingeht.
+
*Bei positivem Mittelwert&nbsp; $m_y$&nbsp; (mit gleichem Betrag) w&uuml;rde sich an der AKF nichts &auml;ndern, da&nbsp; $m_y$&nbsp; in die AKF-Gleichung quadratisch eingeht.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 21. März 2022, 16:25 Uhr

Musterfunktionen ergodischer Prozesse

Das nebenstehende Bild zeigt Mustersignale zweier Zufallsprozesse  $\{x_i(t)\}$  und  $\{y_i(t)\}$  mit jeweils gleicher Leistung  $P_x = P_y = 5\hspace{0.05 cm} \rm mW$.  Vorausgesetzt ist hierbei der Widerstand  $R = 50\hspace{0.05 cm}\rm \Omega$.


Der Zufallsprozess  $\{x_i(t)\}$

  • ist mittelwertfrei  $(m_x = 0)$,
  • besitzt die gaußförmige AKF   $\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$  und
  • weist die äquivalente AKF-Dauer  $\nabla \tau_x = 5\hspace{0.05 cm}\rm µ s $  auf.


Wie aus dem unteren Bild zu erkennen ist, hat der Zufallsprozess  $\{y_i(t)\}$  sehr viel stärkere innere statistische Bindungen als der Zufallsprozess  $\{x_i(t)\}$.

Oder anders ausgedrückt:

  • Der Zufallsprozess  $\{y_i(t)\}$  ist niederfrequenter als  $\{x_i(t)\}$.
  • Die äquivalente AKF-Dauer ist  $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.


Aus der Skizze ist auch zu erkennen, dass  $\{y_i(t)\}$  im Gegensatz zu  $\{x_i(t)\}$  nicht gleichsignalfrei ist.  Der Gleichsignalanteil beträgt vielmehr  $m_y = -0.3 \hspace{0.05 cm}\rm V$.



Hinweise:



Fragebogen

1

Welchen Effektivwert  $(\sigma_x)$  besitzen die Mustersignale des Prozesses  $\{x_i(t)\}$?

$\sigma_x \ = \ $

$\ \rm V$

2

Welche AKF–Werte ergeben sich für  $\tau = 2\hspace{0.05 cm}\rm µs$  bzw.  $\tau = 5\hspace{0.05 cm}\rm µ s$?

$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$
$\varphi_x(\tau = 5\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$

3

Wie groß ist die Korrelationsdauer  $T_{\rm K}$,  also derjenige Zeitpunkt,  bei dem die AKF auf die Hälfte des Maximums abgefallen ist?

$T_{\rm K} \ = \ $

$\ \rm µ s$

4

Welchen Effektivwert  $(\sigma_y)$  besitzen die Mustersignale des Prozesses $\{y_i(t)\}$?

$\sigma_y \ = \ $

$\ \rm V$

5

Berechnen Sie die AKF  $\varphi_x(\tau)$.  Wie groß ist der AKF-Wert bei  $\tau = 10\hspace{0.05 cm}\rm µ s$?  Welcher AKF–Verlauf ergäbe sich bei positivem Mittelwert  $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?

$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \ = \ $

$\ \rm mW$


Musterlösung

(1)  Das zweite Moment ergibt sich zu  $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$

  • Daraus folgt der Effektivwert  $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.


(2)  Wegen  $P_x = \varphi_x (\tau = 0)$  gilt für die AKF allgemein:

$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
  • Daraus erhält man:
$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} µ s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm µ s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$


Zweimal Gaußsche AKF

(3)  Hier gilt folgende Bestimmungsgleichung:

$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$
  • Daraus folgt  $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm µ s}}$.
  • Bei anderer AKF-Form erhält man ein anderes Verhältnis für  $T_{\rm K} / {\rm \nabla} \tau_x$.



(4)  Die Leistungen  $P_x = P_y$  sind gleich,  und zwar jeweils  $0.25\hspace{0.05 cm}\rm V^2$.

  • Unter Berücksichtigung des Mittelwertes  $m_y = -0.3 \hspace{0.05 cm}\rm V$  gilt:
$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$
  • Daraus folgt:
$$\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}.$$


(5)  Bezogen auf den Einheitswiderstand  $ R = 1 \hspace{0.05 cm}{\rm \Omega}$  lautet die AKF des Prozesses  $\{y_i(t)\}$:

$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
  • Rechts sehen Sie den Funktionsverlauf.  Bezogen auf den Widerstand  $ R = 50 \hspace{0.05 cm}{\rm \Omega}$  ergeben sich die nachfolgend angegebenen AKF-Werte:
$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
  • Daraus folgt:
$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$
  • Bei positivem Mittelwert  $m_y$  (mit gleichem Betrag) würde sich an der AKF nichts ändern, da  $m_y$  in die AKF-Gleichung quadratisch eingeht.