Aufgaben:Aufgabe 2.2: Verzerrungsleistung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID883__LZI_A_2_2.png|right|frame|Eingangssignal und Ausgangssignale]]
 
[[Datei:P_ID883__LZI_A_2_2.png|right|frame|Eingangssignal und Ausgangssignale]]
Am Eingang eines Nachrichtensystems $S_1$ wird ein Rechteckimpuls  $x(t)$  mit der Amplitude  $1 \hspace{0.08cm} \rm  V$  und der Dauer  $4 \hspace{0.08cm} \rm  ms$   angelegt. Am Systemausgang wird dann der Impuls  $y_1(t)$  gemessen, dessen Signalparameter der mittleren Skizze entnommen werden können.
+
Am Eingang eines Nachrichtensystems  $S_1$  wird ein Rechteckimpuls  $x(t)$  mit der Amplitude  $1 \hspace{0.08cm} \rm  V$  und der Dauer  $4 \hspace{0.08cm} \rm  ms$   angelegt. Am Systemausgang wird dann der Impuls  $y_1(t)$  gemessen, dessen Signalparameter der mittleren Skizze entnommen werden können.
  
Am Ausgang eines anderen Systems $S_2$ stellt sich bei gleichem Eingangssignal  $x(t)$  das in dem unteren Bild dargestellte Signal   $y_2(t)$  ein.
+
Am Ausgang eines anderen Systems  $S_2$  stellt sich bei gleichem Eingangssignal  $x(t)$  das in dem unteren Bild dargestellte Signal   $y_2(t)$  ein.
  
 
Für das in dieser Aufgabe verwendete Fehlersignal gelte folgende Definition:
 
Für das in dieser Aufgabe verwendete Fehlersignal gelte folgende Definition:
Zeile 17: Zeile 17:
  
 
Das Integrationsintervall ist jeweils geeignet zu wählen:  
 
Das Integrationsintervall ist jeweils geeignet zu wählen:  
*Benutzen Sie für  $y_1(t)$  den Bereich von $0$ ... $4 \hspace{0.08cm} \rm ms$ und für  $y_2(t)$  das Intervall $1 \hspace{0.08cm} {\rm ms}$ ... $5 \hspace{0.08cm} \rm ms$.  
+
*Benutzen Sie für  $y_1(t)$  den Bereich von  $0$ ... $4 \hspace{0.08cm} \rm ms$  und für   $y_2(t)$  das Intervall  $1 \hspace{0.08cm} {\rm ms}$ ... $5 \hspace{0.08cm} \rm ms$.  
 
*Damit  beträgt in beiden Fällen die Messdauer  $T_{\rm M} = 4 \hspace{0.08cm} \rm ms$.  
 
*Damit  beträgt in beiden Fällen die Messdauer  $T_{\rm M} = 4 \hspace{0.08cm} \rm ms$.  
 
*Es ist offensichtlich, dass bezüglich  $y_1(t)$   die Parameter  $\alpha = 1$  und  $\tau = 0$  jeweils zur minimalen Verzerrungsleistung führen.
 
*Es ist offensichtlich, dass bezüglich  $y_1(t)$   die Parameter  $\alpha = 1$  und  $\tau = 0$  jeweils zur minimalen Verzerrungsleistung führen.
Zeile 26: Zeile 26:
  
 
Hierbei bezeichnet  
 
Hierbei bezeichnet  
*$P_x$ die Leistung des Signals  $x(t)$, und  
+
*$P_x$  die Leistung des Signals  $x(t)$, und  
*$\alpha^2 \cdot P_x$ die Leistung von  $y(t) = \alpha \cdot x(t - \tau)$, die sich bei Abwesenheit von Verzerrungen ergeben würde.  
+
*$\alpha^2 \cdot P_x$  die Leistung von  $y(t) = \alpha \cdot x(t - \tau)$, die sich bei Abwesenheit von Verzerrungen ergeben würde.  
  
  
Meist – so auch in dieser Aufgabe – wird dieses S/N-Verhältnis $\rho_{\rm V}$ logarithmisch in $\rm dB$ angegeben.
+
Meist – so auch in dieser Aufgabe – wird dieses S/N-Verhältnis  $\rho_{\rm V}$  logarithmisch in  $\rm dB$  angegeben.
  
  
Zeile 48: Zeile 48:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Ermitteln Sie die Verzerrungsleistung des Systems $S_1$.
+
{Ermitteln Sie die Verzerrungsleistung des Systems&nbsp; $S_1$.
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm V1} \ = \ $  { 5 3% } $\ \cdot 10^{-3} \ {\rm V}^2$
 
$P_{\rm V1} \ = \ $  { 5 3% } $\ \cdot 10^{-3} \ {\rm V}^2$
  
  
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis für System $S_1$.
+
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis für System&nbsp; $S_1$.
 
|type="{}"}
 
|type="{}"}
 
$10 \cdot {\rm lg} \ \rho_\text{V1} \ = \ $  { 23.01 3% } $\ \rm dB$
 
$10 \cdot {\rm lg} \ \rho_\text{V1} \ = \ $  { 23.01 3% } $\ \rm dB$
  
  
{Welche Parameter $\alpha$ und $\tau$ sollten zur Berechnung der Verzerrungsleistung des Systems $S_2$ herangezogen werden? <br>Begründen Sie Ihr Ergebnis.
+
{Welche Parameter&nbsp; $\alpha$&nbsp; und&nbsp; $\tau$&nbsp; sollten zur Berechnung der Verzerrungsleistung des Systems&nbsp; $S_2$&nbsp; herangezogen werden? <br>Begründen Sie Ihr Ergebnis.
 
|type="{}"}
 
|type="{}"}
 
$\alpha \ = \ $  { 0.5 3% }
 
$\alpha \ = \ $  { 0.5 3% }
Zeile 64: Zeile 64:
  
  
{Ermitteln Sie die Verzerrungsleistung des Systems $S_2$.
+
{Ermitteln Sie die Verzerrungsleistung des Systems&nbsp; $S_2$.
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm V2} \ = \ $  { 5 3% } $\ \cdot 10^{-3} \ {\rm V}^2$
 
$P_{\rm V2} \ = \ $  { 5 3% } $\ \cdot 10^{-3} \ {\rm V}^2$
  
  
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis für das System $S_2$. <br>Interpretieren Sie die unterschiedlichen Ergebnisse.
+
{Berechnen Sie das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis für das System&nbsp; $S_2$. <br>Interpretieren Sie die unterschiedlichen Ergebnisse.
 
|type="{}"}
 
|type="{}"}
 
$10 \cdot {\rm lg} \ \rho_\text{V2} \ = \ $ { 16.99 3% } $\ \rm dB$
 
$10 \cdot {\rm lg} \ \rho_\text{V2} \ = \ $ { 16.99 3% } $\ \rm dB$
Zeile 80: Zeile 80:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
[[Datei:P_ID915__LZI_A_2_2_a.png|right|frame|Resultierende Fehlersignale]]
 
[[Datei:P_ID915__LZI_A_2_2_a.png|right|frame|Resultierende Fehlersignale]]
'''(1)'''&nbsp; Mit den gegebenen Parametern $\alpha = 1$ und $\tau= 0$ erhält man das in der Grafik dargestellte Fehlersignal $\varepsilon(t)$. Die Verzerrungsleistung ist somit gleich:
+
'''(1)'''&nbsp; Mit den gegebenen Parametern &nbsp;$\alpha = 1$&nbsp; und &nbsp;$\tau= 0$&nbsp; erhält man das in der Grafik dargestellte Fehlersignal&nbsp; $\varepsilon_1(t)$. Die Verzerrungsleistung ist somit gleich:
:$$P_{\rm V1}  =  \frac{ {1 \, \rm ms}}{4 \, \rm ms} \cdot \left[ ({0.1 \, \rm V})^2  +
+
:$$P_{\rm V1}  =  \frac{ {1 \, \rm ms}}{4 \, \rm ms} \cdot \big[ ({0.1 \, \rm V})^2  +
   ({-0.1 \, \rm V})^2\right]\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}. $$
+
   ({-0.1 \, \rm V})^2\big]\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}. $$
 +
 
  
  
Zeile 88: Zeile 89:
 
:$$P_{x}  =  \frac{1}{4 \, \rm ms} \cdot ({1 \, \rm V})^2 \cdot {4 \, \rm ms}\hspace{0.15cm}{ = {1 \, \rm  V^2}}.$$
 
:$$P_{x}  =  \frac{1}{4 \, \rm ms} \cdot ({1 \, \rm V})^2 \cdot {4 \, \rm ms}\hspace{0.15cm}{ = {1 \, \rm  V^2}}.$$
  
Mit dem Ergebnis aus (1) erhält man somit für das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis:
+
*Mit dem Ergebnis aus&nbsp; '''(1)'''&nbsp; erhält man somit für das Signal&ndash;zu&ndash;Verzerrungs&ndash;Leistungsverhältnis:
 
$$\rho_{\rm V1} = \frac{  P_{x}}{P_{\rm V1}}= \frac{  {1 \, \rm
 
$$\rho_{\rm V1} = \frac{  P_{x}}{P_{\rm V1}}= \frac{  {1 \, \rm
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 200\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
 
   V^2}}{0.005 \,  \rm V^2}\hspace{0.05cm}\rm = 200\hspace{0.3cm} \Rightarrow \hspace{0.3cm}
Zeile 94: Zeile 95:
  
  
'''(3)'''&nbsp; Die Skizze auf dem Angabenblatt macht deutlich, dass sich auch ohne die auftretenden Verzerrungen, sondern allein durch Dämpfung und Laufzeit das Signal $y(t)$ von $x(t)$ deutlich unterscheiden würde. Es würde sich $y(t) = 0.5 \cdot x(t-1\ {\rm ms}) $  ergeben.
 
  
Wenn jemand diese Werte nicht sofort aus der Grafik erkennt, so müsste er für sehr (unendlich) viele $\alpha$&ndash; und $\tau$&ndash;Werte zunächst das Fehlersignal
+
'''(3)'''&nbsp; Die Skizze auf dem Angabenblatt macht deutlich, dass sich auch ohne die auftretenden Verzerrungen &ndash; sondern allein durch Dämpfung und Laufzeit das Signal &nbsp;$y(t)$&nbsp; von &nbsp;$x(t)$&nbsp; &ndash; deutlich unterscheiden würde.
 +
*Es würde sich &nbsp;$y(t) = 0.5 \cdot x(t-1\ {\rm ms}) $&nbsp;  ergeben.
 +
 
 +
*Wenn jemand diese Werte nicht sofort aus der Grafik erkennt, so müsste er für sehr (unendlich) viele &nbsp;$\alpha$&ndash;&nbsp; und &nbsp;$\tau$&ndash;Werte zunächst das Fehlersignal
 
:$$\varepsilon_2(t) = y_2(t) - \alpha \cdot x(t - \tau)$$
 
:$$\varepsilon_2(t) = y_2(t) - \alpha \cdot x(t - \tau)$$
  
und anschließend den mittleren quadratischen Fehler ermitteln, wobei das Integrationsintervall jeweils an $\tau$ anzupassen ist. Auch dann würde man das kleinstmögliche Ergebnis für $\alpha \; \underline{= 0.5}$ und $\tau \; \underline{= 1 \ \rm ms}$ erhalten. Für diese Optimierung von $\alpha$ und $\tau$ sollte man sich allerdings schon ein Computerprogramm gönnen.
+
:und anschließend den mittleren quadratischen Fehler ermitteln, wobei das Integrationsintervall jeweils an &nbsp;$\tau$&nbsp; anzupassen ist.  
 +
*Auch dann würde man das kleinstmögliche Ergebnis für &nbsp;$\alpha \; \underline{= 0.5}$&nbsp; und &nbsp;$\tau \; \underline{= 1 \ \rm ms}$&nbsp; erhalten. Für diese Optimierung von &nbsp;$\alpha$&nbsp; und &nbsp;$\tau$&nbsp; sollte man sich allerdings schon ein Computerprogramm gönnen.
 +
 
  
  
'''(4)'''&nbsp; Die obige Skizze zeigt, dass $\varepsilon_2(t)$  bis auf eine Verschiebung um $1 \ \rm ms$ gleich dem Fehlersignal $\varepsilon_1(t)$ ist. Mit dem Integrationsintervall $1 \ {\rm ms}$ ... $5 \ {\rm ms}$ ergibt sich somit auch die gleiche Verzerrungsleistung:
+
'''(4)'''&nbsp; Die obige Skizze zeigt, dass &nbsp;$\varepsilon_2(t)$&nbsp; bis auf eine Verschiebung um &nbsp;$1 \ \rm ms$&nbsp; gleich dem Fehlersignal &nbsp;$\varepsilon_1(t)$&nbsp; ist. Mit dem Integrationsintervall &nbsp;$1 \ {\rm ms}$ ... $5 \ {\rm ms}$&nbsp; ergibt sich somit auch die gleiche Verzerrungsleistung:
 
:$$P_{\rm V2}  =  P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}.$$
 
:$$P_{\rm V2}  =  P_{\rm V1} \hspace{0.15cm}\underline{ =  5 \cdot 10^{-3} \, \rm  V^2}.$$
 +
  
  
Zeile 111: Zeile 117:
 
   10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2} \hspace{0.15cm}\underline{= {16.99 \, \rm dB}}.$$
 
   10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2} \hspace{0.15cm}\underline{= {16.99 \, \rm dB}}.$$
  
Trotz gleicher Verzerrungsleistung ist $10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2}$ gegenüber $10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}$ um etwa $6 \ \rm dB$ geringer. Das Signal $y_2(t)$ ist also hinsichtlich des SNR  deutlich ungünstiger als $y_1(t)$. Hierbei ist berücksichtigt, dass nun wegen $\alpha = 0.5$ die Leistung des Ausgangssignals nur noch ein Viertel der Eingangsleistung beträgt.
+
*Trotz gleicher Verzerrungsleistung ist &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2}$&nbsp; gegenüber &nbsp;$10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}$&nbsp; um etwa &nbsp;$6 \ \rm dB$&nbsp; geringer.  
 +
*Das Signal &nbsp;$y_2(t)$&nbsp; ist also hinsichtlich des SNR  deutlich ungünstiger als &nbsp;$y_1(t)$.
 +
* Es ist berücksichtigt, dass nun wegen &nbsp;$\alpha = 0.5$&nbsp; die Leistung des Ausgangssignals nur noch ein Viertel der Eingangsleistung beträgt.
 +
*Würde man diese Dämpfung am Ausgang durch eine Verstärkung um $1/\alpha$ kompensieren, so würde zwar die Verzerrungsleistung um $\alpha^2$ größer.  
  
Würde man diese Dämpfung am Ausgang durch eine Verstärkung um $1/\alpha$ kompensieren, so würde zwar die Verzerrungsleistung um $\alpha^2$ größer. Das Signal-zu-Verzerrungs-Leistungsverhältnis <i>&rho;</i><sub>V2</sub> bliebe jedoch erhalten, weil auch das &bdquo;Nutzsignal&rdquo; um den gleichen Betrag angehoben wird.
+
*Das Signal-zu-Verzerrungs-Leistungsverhältnis $\rho_{\rm V2}$ bliebe jedoch erhalten, weil auch das &bdquo;Nutzsignal&rdquo; um den gleichen Betrag angehoben wird.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 28. Oktober 2019, 09:20 Uhr

Eingangssignal und Ausgangssignale

Am Eingang eines Nachrichtensystems  $S_1$  wird ein Rechteckimpuls  $x(t)$  mit der Amplitude  $1 \hspace{0.08cm} \rm V$  und der Dauer  $4 \hspace{0.08cm} \rm ms$  angelegt. Am Systemausgang wird dann der Impuls  $y_1(t)$  gemessen, dessen Signalparameter der mittleren Skizze entnommen werden können.

Am Ausgang eines anderen Systems  $S_2$  stellt sich bei gleichem Eingangssignal  $x(t)$  das in dem unteren Bild dargestellte Signal  $y_2(t)$  ein.

Für das in dieser Aufgabe verwendete Fehlersignal gelte folgende Definition:

$$\varepsilon(t) = y(t) - \alpha \cdot x(t - \tau) .$$

Die Parameter  $\alpha$  und  $\tau$  sind so zu bestimmen, dass die Verzerrungsleistung (der mittlere quadratische Fehler) minimal ist. Für diese gilt:

$$P_{\rm V} = \overline{\varepsilon^2(t)} = \frac{1}{T_{\rm M}} \cdot \int\limits_{ ( T_{\rm M})} {\varepsilon^2(t) }\hspace{0.1cm}{\rm d}t$$

Bei diesen Definitionen ist bereits berücksichtigt, dass eine frequenzunabhängige Dämpfung ebenso wie eine für alle Frequenzen konstante Laufzeit nicht zur Verzerrung beiträgt.

Das Integrationsintervall ist jeweils geeignet zu wählen:

  • Benutzen Sie für  $y_1(t)$  den Bereich von  $0$ ... $4 \hspace{0.08cm} \rm ms$  und für   $y_2(t)$  das Intervall  $1 \hspace{0.08cm} {\rm ms}$ ... $5 \hspace{0.08cm} \rm ms$.
  • Damit beträgt in beiden Fällen die Messdauer  $T_{\rm M} = 4 \hspace{0.08cm} \rm ms$.
  • Es ist offensichtlich, dass bezüglich  $y_1(t)$  die Parameter  $\alpha = 1$  und  $\tau = 0$  jeweils zur minimalen Verzerrungsleistung führen.


Das so genannte Signal–zu–Verzerrungs–Leistungsverhältnis berechnet sich im allgemeinen Fall zu

$$\rho_{\rm V} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V}} \hspace{0.05cm}.$$

Hierbei bezeichnet

  • $P_x$  die Leistung des Signals  $x(t)$, und
  • $\alpha^2 \cdot P_x$  die Leistung von  $y(t) = \alpha \cdot x(t - \tau)$, die sich bei Abwesenheit von Verzerrungen ergeben würde.


Meist – so auch in dieser Aufgabe – wird dieses S/N-Verhältnis  $\rho_{\rm V}$  logarithmisch in  $\rm dB$  angegeben.




Hinweise:

Quantitatives Maß für die Signalverzerrungen  sowie  
Berücksichtigung von Dämpfung und Laufzeit.


Fragebogen

1

Ermitteln Sie die Verzerrungsleistung des Systems  $S_1$.

$P_{\rm V1} \ = \ $

$\ \cdot 10^{-3} \ {\rm V}^2$

2

Berechnen Sie das Signal–zu–Verzerrungs–Leistungsverhältnis für System  $S_1$.

$10 \cdot {\rm lg} \ \rho_\text{V1} \ = \ $

$\ \rm dB$

3

Welche Parameter  $\alpha$  und  $\tau$  sollten zur Berechnung der Verzerrungsleistung des Systems  $S_2$  herangezogen werden?
Begründen Sie Ihr Ergebnis.

$\alpha \ = \ $

$\tau \ = \ $

$\ \rm ms$

4

Ermitteln Sie die Verzerrungsleistung des Systems  $S_2$.

$P_{\rm V2} \ = \ $

$\ \cdot 10^{-3} \ {\rm V}^2$

5

Berechnen Sie das Signal–zu–Verzerrungs–Leistungsverhältnis für das System  $S_2$.
Interpretieren Sie die unterschiedlichen Ergebnisse.

$10 \cdot {\rm lg} \ \rho_\text{V2} \ = \ $

$\ \rm dB$


Musterlösung

Resultierende Fehlersignale

(1)  Mit den gegebenen Parametern  $\alpha = 1$  und  $\tau= 0$  erhält man das in der Grafik dargestellte Fehlersignal  $\varepsilon_1(t)$. Die Verzerrungsleistung ist somit gleich:

$$P_{\rm V1} = \frac{ {1 \, \rm ms}}{4 \, \rm ms} \cdot \big[ ({0.1 \, \rm V})^2 + ({-0.1 \, \rm V})^2\big]\hspace{0.3cm}\Rightarrow \hspace{0.3cm}P_{\rm V1} \hspace{0.15cm}\underline{ = 5 \cdot 10^{-3} \, \rm V^2}. $$


(2)  Die Leistung des Eingangssignals beträgt:

$$P_{x} = \frac{1}{4 \, \rm ms} \cdot ({1 \, \rm V})^2 \cdot {4 \, \rm ms}\hspace{0.15cm}{ = {1 \, \rm V^2}}.$$
  • Mit dem Ergebnis aus  (1)  erhält man somit für das Signal–zu–Verzerrungs–Leistungsverhältnis:

$$\rho_{\rm V1} = \frac{ P_{x}}{P_{\rm V1}}= \frac{ {1 \, \rm V^2}}{0.005 \, \rm V^2}\hspace{0.05cm}\rm = 200\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}\hspace{0.15cm}\underline{ = {23.01 \, \rm dB}}.$$


(3)  Die Skizze auf dem Angabenblatt macht deutlich, dass sich auch ohne die auftretenden Verzerrungen – sondern allein durch Dämpfung und Laufzeit das Signal  $y(t)$  von  $x(t)$  – deutlich unterscheiden würde.

  • Es würde sich  $y(t) = 0.5 \cdot x(t-1\ {\rm ms}) $  ergeben.
  • Wenn jemand diese Werte nicht sofort aus der Grafik erkennt, so müsste er für sehr (unendlich) viele  $\alpha$–  und  $\tau$–Werte zunächst das Fehlersignal
$$\varepsilon_2(t) = y_2(t) - \alpha \cdot x(t - \tau)$$
und anschließend den mittleren quadratischen Fehler ermitteln, wobei das Integrationsintervall jeweils an  $\tau$  anzupassen ist.
  • Auch dann würde man das kleinstmögliche Ergebnis für  $\alpha \; \underline{= 0.5}$  und  $\tau \; \underline{= 1 \ \rm ms}$  erhalten. Für diese Optimierung von  $\alpha$  und  $\tau$  sollte man sich allerdings schon ein Computerprogramm gönnen.


(4)  Die obige Skizze zeigt, dass  $\varepsilon_2(t)$  bis auf eine Verschiebung um  $1 \ \rm ms$  gleich dem Fehlersignal  $\varepsilon_1(t)$  ist. Mit dem Integrationsintervall  $1 \ {\rm ms}$ ... $5 \ {\rm ms}$  ergibt sich somit auch die gleiche Verzerrungsleistung:

$$P_{\rm V2} = P_{\rm V1} \hspace{0.15cm}\underline{ = 5 \cdot 10^{-3} \, \rm V^2}.$$


(5)  Entsprechend dem Angabenblatt gilt:

$$\rho_{\rm V2} = \frac{ \alpha^2 \cdot P_{x}}{P_{\rm V2}}= \frac{ 0.5^2 \cdot {1 \, \rm V^2}}{0.005 \, \rm V^2}\hspace{0.05cm}\rm = 50\hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2} \hspace{0.15cm}\underline{= {16.99 \, \rm dB}}.$$
  • Trotz gleicher Verzerrungsleistung ist  $10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V2}$  gegenüber  $10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm V1}$  um etwa  $6 \ \rm dB$  geringer.
  • Das Signal  $y_2(t)$  ist also hinsichtlich des SNR deutlich ungünstiger als  $y_1(t)$.
  • Es ist berücksichtigt, dass nun wegen  $\alpha = 0.5$  die Leistung des Ausgangssignals nur noch ein Viertel der Eingangsleistung beträgt.
  • Würde man diese Dämpfung am Ausgang durch eine Verstärkung um $1/\alpha$ kompensieren, so würde zwar die Verzerrungsleistung um $\alpha^2$ größer.
  • Das Signal-zu-Verzerrungs-Leistungsverhältnis $\rho_{\rm V2}$ bliebe jedoch erhalten, weil auch das „Nutzsignal” um den gleichen Betrag angehoben wird.