Lineare zeitinvariante Systeme/Folgerungen aus dem Zuordnungssatz: Unterschied zwischen den Versionen
(12 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 8: | Zeile 8: | ||
== # ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL # == | == # ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL # == | ||
<br> | <br> | ||
− | In den beiden ersten Kapiteln wurden aus Darstellungsgründen meist Filterfunktionen mit reellwertigen Frequenzgängen betrachtet, so dass die dazugehörige Zeitfunktion symmetrisch zum Zeitnullpunkt ist. Die Impulsantwort eines realisierbaren Systems muss aber stets kausal sein, das heißt, es muss $h(t)$ für $t < 0$ identisch Null sein. Diese starke Asymmetrie der Zeitfunktion $h(t)$ bedeutet aber gleichzeitig, dass der Frequenzgang $H(f)$ eines realisierbaren Systems mit Ausnahme von $H(f) = K$ immer | + | In den beiden ersten Kapiteln wurden aus Darstellungsgründen meist Filterfunktionen mit reellwertigen Frequenzgängen betrachtet, so dass die dazugehörige Zeitfunktion symmetrisch zum Zeitnullpunkt ist. Die Impulsantwort eines realisierbaren Systems muss aber stets kausal sein, das heißt, es muss $h(t)$ für $t < 0$ identisch Null sein. Diese starke Asymmetrie der Zeitfunktion $h(t)$ bedeutet aber gleichzeitig, dass der Frequenzgang $H(f)$ eines realisierbaren Systems mit Ausnahme von $H(f) = K$ immer komplexwertig ist, wobei zwischen dessen Realteil und Imaginärteil ein fester Zusammenhang besteht. |
Dieses dritte Kapitel bringt eine zusammenfassende Darstellung der Beschreibung kausaler realisierbarer Systeme, die sich auch von den mathematischen Methoden her von den bei akausalen Systemen üblichen Verfahren unterscheiden. | Dieses dritte Kapitel bringt eine zusammenfassende Darstellung der Beschreibung kausaler realisierbarer Systeme, die sich auch von den mathematischen Methoden her von den bei akausalen Systemen üblichen Verfahren unterscheiden. | ||
Zeile 14: | Zeile 14: | ||
Im Einzelnen wird nachfolgend behandelt: | Im Einzelnen wird nachfolgend behandelt: | ||
− | *die Hilbert–Transformation, die aussagt, wie Real– und Imaginärteil von $H(f)$ zusammenhängen, | + | *die Hilbert–Transformation, die aussagt, wie Real– und Imaginärteil von $H(f)$ zusammenhängen, |
*die Laplace–Transformation, die bei kausalem $h(t)$ eine weitere Spektralfunktion $H_{\rm L}(p)$ liefert, | *die Laplace–Transformation, die bei kausalem $h(t)$ eine weitere Spektralfunktion $H_{\rm L}(p)$ liefert, | ||
*die Beschreibung realisierbarer Systeme durch das Pol–Nullstellen–Diagramm, sowie | *die Beschreibung realisierbarer Systeme durch das Pol–Nullstellen–Diagramm, sowie | ||
Zeile 21: | Zeile 21: | ||
Zu diesem Kapitel empfehlen wir | Zu diesem Kapitel empfehlen wir | ||
− | *zur Vorbereitung das Lernvideo [[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|Rechnen mit komplexen Zahlen]], sowie | + | *zur Vorbereitung das Lernvideo [[Rechnen_mit_komplexen_Zahlen_(Lernvideo)|Rechnen mit komplexen Zahlen]], sowie |
− | * das interaktive Applet [[Applets:Kausale_Systeme_-_Laplacetransformation|Kausale Systeme – Laplacetransformation]] - eine zusammenhängende Darstellung. | + | * das interaktive Applet [[Applets:Kausale_Systeme_-_Laplacetransformation|Kausale Systeme – Laplacetransformation]] - eine zusammenhängende Darstellung. |
==Voraussetzungen für das gesamte Kapitel „Realisierbare Systeme”== | ==Voraussetzungen für das gesamte Kapitel „Realisierbare Systeme”== | ||
<br> | <br> | ||
− | In den beiden ersten Kapiteln wurden meist reelle [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#.C3. | + | In den beiden ersten Kapiteln wurden meist reelle [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Frequenzbereich#Frequenzgang_.E2.80.93_Systemfunktion_.E2.80.93_.C3.9Cbertragungsfunktion|Übertragungsfunktionen]] $H(f)$ betrachtet, bei denen demzufolge die zugehörige Impulsantwort $h(t)$ stets symmetrisch zum Bezugszeitpunkt $t = 0$ ist. Solche Übertragungsfunktionen |
*eignen sich, um grundlegende Zusammenhänge einfach zu erklären, | *eignen sich, um grundlegende Zusammenhänge einfach zu erklären, | ||
*sind aber leider aus Kausalitätsgründen nicht realisierbar. | *sind aber leider aus Kausalitätsgründen nicht realisierbar. | ||
Zeile 36: | Zeile 36: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
$\text{Definition:}$ | $\text{Definition:}$ | ||
− | Die '''Impulsantwort''' $h(t)$ ist gleich dem Ausgangssignal $y(t)$ des Systems, wenn am Eingang zum Zeitpunkt $t = 0$ ein unendlich kurzer Impuls mit unendlich großer Ampltude anliegt: $x(t) = δ(t)$. Man bezeichnet einen solchen Impuls als [[Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale#Diracimpuls|Diracimpuls]].}} | + | Die '''Impulsantwort''' $h(t)$ ist gleich dem Ausgangssignal $y(t)$ des Systems, wenn am Eingang zum Zeitpunkt $t = 0$ ein unendlich kurzer Impuls mit unendlich großer Ampltude anliegt: $x(t) = δ(t)$. Man bezeichnet einen solchen Impuls als [[Signaldarstellung/Einige_Sonderfälle_impulsartiger_Signale#Diracimpuls|Diracimpuls]].}} |
Zeile 43: | Zeile 43: | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
$\text{Definition:}$ | $\text{Definition:}$ | ||
− | Bei einem '''kausalen System''' ist die Impulsantwort $h(t)$ für alle Zeiten $t < 0$ identisch | + | Bei einem '''kausalen System''' ist die Impulsantwort $h(t)$ für alle Zeiten $t < 0$ identisch Null.}} |
− | Die einzige reelle Übertragungsfunktion, die der Kausalitätsbedingung | + | Die einzige reelle Übertragungsfunktion, die der Kausalitätsbedingung „das Ausgangssignal kann nicht vor dem Eingangssignal beginnen” genügt, lautet: |
:$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$ | :$$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$ | ||
− | Alle anderen reellwertigen Übertragungsfunktionen $H(f)$ beschreiben akausale Systeme und sind somit durch ein (elektrisches) Schaltungsnetzwerk nicht zu realisieren. | + | Alle anderen reellwertigen Übertragungsfunktionen $H(f)$ beschreiben akausale Systeme und sind somit durch ein (elektrisches) Schaltungsnetzwerk nicht zu realisieren. |
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{In anderen Worten:}$ Außer der Übertragungsfunktion $H(f) = K$ '''ist jede realistische Übertragungsfunktion komplex'''. | + | $\text{In anderen Worten:}$ Außer der Übertragungsfunktion $H(f) = K$ '''ist jede realistische Übertragungsfunktion komplex'''. |
+ | *Gilt zudem $K=1$, so bezeichnet man die Übertragungsfunktion als ideal. | ||
+ | *Der Ausgang $y(t)$ ist dann identische mit dem Eingang $x(t)$ – auch ohne Dämpfung oder Verstärkung.}} | ||
==Real– und Imaginärteil einer kausalen Übertragungsfunktion== | ==Real– und Imaginärteil einer kausalen Übertragungsfunktion== | ||
<br> | <br> | ||
− | + | Jede kausale Impulsantwort $h(t)$ kann als Summe eines geraden Anteils $h_{\rm g}(t)$ und eines ungeraden Anteils $h_{\rm u}(t)$ dargestellt werden: | |
:$$\begin{align*} h_{ {\rm g}}(t) & = {1}/{2}\cdot \big[ h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & = {1}/{2}\cdot \big[ h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$ | :$$\begin{align*} h_{ {\rm g}}(t) & = {1}/{2}\cdot \big[ h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & = {1}/{2}\cdot \big[ h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$ | ||
− | Hierbei ist die sogenannte [https://de.wikipedia.org/wiki/Vorzeichenfunktion Signum–Funktion] verwendet: | + | Hierbei ist die sogenannte [https://de.wikipedia.org/wiki/Vorzeichenfunktion Signum–Funktion] verwendet: |
:$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\ | :$${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\ | ||
+1 \\ \end{array} \right.\quad \quad | +1 \\ \end{array} \right.\quad \quad | ||
Zeile 67: | Zeile 69: | ||
{ t > 0.} \\ | { t > 0.} \\ | ||
\end{array}$$ | \end{array}$$ | ||
− | |||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
$\text{Beispiel 1:}$ | $\text{Beispiel 1:}$ | ||
− | Die Grafik zeigt diese Aufspaltung für eine kausale exponentiell abfallende Impulsantwort eines Tiefpasses erster Ordnung entsprechend [[Aufgaben:Aufgabe_1.3Z:_Exponentiell_abfallende_Impulsantwort|Aufgabe 1.3Z]]. | + | Die Grafik zeigt diese Aufspaltung für eine kausale exponentiell abfallende Impulsantwort eines Tiefpasses erster Ordnung entsprechend [[Aufgaben:Aufgabe_1.3Z:_Exponentiell_abfallende_Impulsantwort|Aufgabe 1.3Z]]: |
+ | [[Datei: P_ID1750__LZI_T_3_1_S2a_neu.png |right|frame| Aufteilung der Impulsantwort in einen geraden und einen ungeraden Anteil|class=fit]] | ||
:$$h(t) = \left\{ \begin{array}{c} 0 \\ | :$$h(t) = \left\{ \begin{array}{c} 0 \\ | ||
0.5/T \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad | 0.5/T \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad | ||
Zeile 80: | Zeile 82: | ||
\end{array}$$ | \end{array}$$ | ||
− | |||
− | |||
Man erkennt: | Man erkennt: | ||
Zeile 89: | Zeile 89: | ||
− | Betrachten wir nun den gleichen Sachverhalt im Spektralbereich. Nach dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatz]] gilt für die komplexe Übertragungsfunktion: $H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \} | + | Betrachten wir nun den gleichen Sachverhalt im Spektralbereich. Nach dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatz]] gilt für die komplexe Übertragungsfunktion: |
− | ,$ | + | :$$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \} |
+ | ,$$ | ||
+ | wobei folgende Zuordnung gilt: | ||
:$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$ | :$${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$ | ||
Zeile 96: | Zeile 98: | ||
:$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$ | :$${\rm j} \cdot {\rm Im} \left\{ H(f) \right\} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$ | ||
− | Zunächst soll an einem weiteren Beispiel | + | Zunächst soll an einem weiteren Beispiel dieser Zusammenhang zwischen Real– und Imaginärteil von $H(f)$ herausgearbeitet werden. |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
Zeile 102: | Zeile 104: | ||
Wir gehen von einem Tiefpass erster Ordnung aus, für dessen Übertragungsfunktion gilt: | Wir gehen von einem Tiefpass erster Ordnung aus, für dessen Übertragungsfunktion gilt: | ||
:$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$ | :$$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$ | ||
− | |||
− | + | [[Datei:P_ID1754__LZI_T_3_1_S2b_neu.png|right|frame|Frequenzgang eines Tiefpasses erster Ordnung (Real– und Imaginärteil)|class=fit]] | |
+ | Hierbei gibt $f_{\rm G}$ die 3dB–Grenzfrequenz an, bei der $\vert H(f)\vert^2$ auf die Hälfte seines Maximums $($bei $f = 0)$ abgesunken ist. Die dazugehörige Impulsantwort $h(t)$ wurde bereits im obigen $\text{Beispiel 1}$ für $f_{\rm G} = 1/(2πT)$ dargestellt. | ||
+ | |||
+ | Die Grafik zeigt den Realteil (blau) und den Imaginärteil (rot) von $H(f)$. Grün–gestrichelt ist zudem der Betrag dargestellt. | ||
+ | |||
+ | Nachdem die Zeitfunktionen $h_{\rm g}(t)$ und $h_{\rm u}(t)$ über die Signumfunktion zusammenhängen, besteht auch | ||
+ | * zwischen dem Realteil ⇒ ${\rm Re} \{H(f)\}$ | ||
+ | * und dem Imaginärteil ⇒ ${\rm Im} \{H(f)\}$ | ||
+ | |||
− | + | der Übertragungsfunktion eine feste Verknüpfung ⇒ die '''Hilbert–Transformation'''. | |
− | + | ||
− | + | Diese wird nachfolgend beschrieben.}} | |
==Hilbert–Transformation== | ==Hilbert–Transformation== | ||
<br> | <br> | ||
− | Wir betrachten hier ganz allgemein zwei Zeitfunktionen $u(t)$ und $w(t) = \sign(t) · u(t)$. Die dazugehörigen Spektralfunktionen werden mit $U(f)$ und ${\rm j} · W(f)$ bezeichnet. Das heißt, in diesem Abschnitt gilt ${w(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet {\rm j} \cdot W(f) }$ und nicht die sonst übliche Fourierkorrespondenz ${w(t) \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet W(f)}.$ | + | Wir betrachten hier ganz allgemein zwei Zeitfunktionen $u(t)$ und $w(t) = \sign(t) · u(t)$. |
+ | *Die dazugehörigen Spektralfunktionen werden mit $U(f)$ und ${\rm j} · W(f)$ bezeichnet. | ||
+ | *Das heißt, in diesem Abschnitt gilt ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j} \cdot W(f) }$ und nicht die sonst übliche Fourierkorrespondenz ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$ | ||
+ | |||
− | Mit der Korrespondenz ${\rm sign}(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$ erhält man nach Ausschreiben des [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungsintegrals]] mit der Integrationsvariablen $ν$ : | + | Mit der Korrespondenz ${\rm sign}(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$ erhält man nach Ausschreiben des [[Signaldarstellung/Faltungssatz_und_Faltungsoperation#Faltung_im_Zeitbereich|Faltungsintegrals]] mit der Integrationsvariablen $ν$ : |
:$${\rm j} \cdot W(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$ | :$${\rm j} \cdot W(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$ | ||
Da aber gleichzeitig auch $u(t) = \sign(t) · w(t)$ zutrifft, gilt in gleicher Weise: | Da aber gleichzeitig auch $u(t) = \sign(t) · w(t)$ zutrifft, gilt in gleicher Weise: | ||
:$$U(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$ | :$$U(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$ | ||
+ | |||
+ | Man hat diese „Integraltransformationen” nach ihrem Entdecker [https://de.wikipedia.org/wiki/David_Hilbert David Hilbert] benannt. | ||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
− | $\text{Definition:}$ | + | $\text{Definition:}$ Beide Varianten der '''Hilbert–Transformation''' werden im weiteren Verlauf mit folgenden Kurzzeichen gekennzeichnet: |
:$$W(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm bzw.}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$ | :$$W(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm bzw.}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$ | ||
− | *Zur Berechnung des durch die Pfeilspitze markierten Spektrums – hier $U(f)$ – wird von den beiden ansonsten identischen Gleichungen die | + | *Zur Berechnung des durch die Pfeilspitze markierten Spektrums – hier $U(f)$ – wird von den beiden ansonsten identischen oberen Gleichungen die Gleichung mit positivem Vorzeichen genommen: |
− | *Das durch den Kreis markierte Spektrum – hier $W(f)$ – ergibt sich aus der | + | :$$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$ |
+ | *Das durch den Kreis markierte Spektrum – hier $W(f)$ – ergibt sich aus der Gleichung mit negativem Vorzeichen: | ||
+ | :$$ | ||
+ | W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$}} | ||
Zeile 131: | Zeile 148: | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
$\text{Beispiel 3:}$ | $\text{Beispiel 3:}$ | ||
− | In [Mar94]<ref name ='Mar94'>Marko, H.: | + | In [Mar94]<ref name ='Mar94'>Marko, H.: Methoden der Systemtheorie. 3. Auflage. Berlin – Heidelberg: Springer, 1994.</ref> findet man die folgende Hilbert–Korrespondenz: |
:$$\frac{1}{1+x^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$ | :$$\frac{1}{1+x^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$ | ||
*Hierbei steht $x$ stellvertretend für eine geeignet normierte Zeit– oder Frequenzvariable. | *Hierbei steht $x$ stellvertretend für eine geeignet normierte Zeit– oder Frequenzvariable. | ||
Zeile 138: | Zeile 155: | ||
Ausgehend von der Gleichung | Ausgehend von der Gleichung | ||
:$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$ | :$${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$ | ||
− | wird somit das auf im [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Real.E2.80.93_und_Imagin.C3.A4rteil_einer_kausalen_.C3.9Cbertragungsfunktion|$\text{Beispiel 2}$]] gefundene Ergebnis bestätigt: | + | wird somit das auf im [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Real.E2.80.93_und_Imagin.C3.A4rteil_einer_kausalen_.C3.9Cbertragungsfunktion|$\text{Beispiel 2}$]] gefundene Ergebnis bestätigt: |
:$${\rm Im} \left\{ H(f) \right \} = \frac{-f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$}} | :$${\rm Im} \left\{ H(f) \right \} = \frac{-f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$}} | ||
Zeile 144: | Zeile 161: | ||
<br> | <br> | ||
Zur Herleitung von Hilbert–Korrespondenzen geht man sehr pragmatisch vor, nämlich wie folgt: | Zur Herleitung von Hilbert–Korrespondenzen geht man sehr pragmatisch vor, nämlich wie folgt: | ||
− | *Man berechnet die [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion#Definition_der_Laplace.E2.80.93Transformation|Laplace–Transformierte]] $Y_{\rm L}(p)$ | + | *Man berechnet die [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion#Definition_der_Laplace.E2.80.93Transformation|Laplace–Transformierte]] $Y_{\rm L}(p)$ der Funktion $y(t)$, wie nachfolgend beschrieben. Diese ist bereits implizit kausal. |
− | * | + | [[Datei:P_ID1752__LZI_T_3_1_S4_neu.png|right|frame|Tabelle mit Hilbert–Korrespondenzen|class=fit]] |
− | + | ||
− | + | *Man wandelt die Spektralfunktion $Y_{\rm L}(p)$ in das zugehörige Fourierspektrum $Y(f)$ um und spaltet dieses in Real– und Imaginärteil auf. Dazu ersetzt man die Variable $p$ durch ${\rm j \cdot 2}πf.$ | |
− | |||
− | |||
− | |||
+ | Der Real– und Imaginärteil – also ${\rm Re} \{Y(f)\}$ und ${\rm Im} \{Y(f)\}$ – sind somit ein Paar von Hilbert–Transformierten. Man ersetzt weiter | ||
+ | # die Frequenzvariable $f$ durch $x$, | ||
+ | # ${\rm Re} \{Y(f)\}$ durch $g(x)$, und | ||
+ | # ${\rm Im} \{Y(f)\}$ durch ${\cal H} \{g(x)\}$. | ||
− | [[ | + | |
+ | Die neue Variable $x$ kann sowohl eine (geeignet) normierte Frequenz oder auch eine (geeignet) normierte Zeit beschreiben. Somit ist die [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion#Darstellung_mit_der_Hilberttransformation|Hilbert–Transformation]] auf verschiedene Probleme anwendbar. | ||
Die Tabelle zeigt einige solcher Hilbertpaare. Auf die Vorzeichen wurde verzichtet, so dass beide Richtungen gültig sind. | Die Tabelle zeigt einige solcher Hilbertpaare. Auf die Vorzeichen wurde verzichtet, so dass beide Richtungen gültig sind. | ||
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
− | $\text{Beispiel 4:}$ Gilt beispielsweise ${\cal H} \{g(x)\} = f(x)$, so folgt daraus auch ${\cal H} \{f(x)\} = \, –g(x)$. Insbesondere gilt auch: | + | $\text{Beispiel 4:}$ Gilt beispielsweise ${\cal H} \{g(x)\} = f(x)$, so folgt daraus auch ${\cal H} \{f(x)\} = \, –g(x)$. Insbesondere gilt auch: |
:$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$}} | :$${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$}} | ||
==Dämpfung und Phase von Minimum–Phasen–Systemen== | ==Dämpfung und Phase von Minimum–Phasen–Systemen== | ||
<br> | <br> | ||
− | Eine wichtige Anwendung der Hilbert–Transformation stellt der Zusammenhang zwischen Dämpfung und Phase bei den so genannten ''Minimum–Phasen–Systemen'' dar. Im Vorgriff auf das folgende Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion | + | Eine wichtige Anwendung der Hilbert–Transformation stellt der Zusammenhang zwischen Dämpfung und Phase bei den so genannten ''Minimum–Phasen–Systemen'' dar. Im Vorgriff auf das folgende Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Transformation_und_p–Übertragungsfunktion|Laplace–Transformation und p–Übertragungsfunktion]] sei erwähnt, dass diese Systeme in der rechten $p$–Halbebene weder Pole noch Nullstellen aufweisen dürfen. |
Allgemein gilt für die Übertragungsfunktion $H(f)$ mit dem [[Lineare_zeitinvariante_Systeme/Einige_Ergebnisse_der_Leitungstheorie#Ersatzschaltbild_eines_kurzen_Leitungsabschnitts|komplexen Übertragungsmaß]] $g(f)$ sowie der Dämpfungsfunktion $a(f)$ und der Phasenfunktion $b(f)$: | Allgemein gilt für die Übertragungsfunktion $H(f)$ mit dem [[Lineare_zeitinvariante_Systeme/Einige_Ergebnisse_der_Leitungstheorie#Ersatzschaltbild_eines_kurzen_Leitungsabschnitts|komplexen Übertragungsmaß]] $g(f)$ sowie der Dämpfungsfunktion $a(f)$ und der Phasenfunktion $b(f)$: | ||
Zeile 170: | Zeile 189: | ||
Bei den Minimum–Phasen–Systemen gilt nun aber nicht nur wie bei allen realisierbaren Systemen die Hilbert–Transformation | Bei den Minimum–Phasen–Systemen gilt nun aber nicht nur wie bei allen realisierbaren Systemen die Hilbert–Transformation | ||
*bezüglich Imaginär– und Realteil ⇒ ${\rm Im} \left\{ H(f) \right \} \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$ | *bezüglich Imaginär– und Realteil ⇒ ${\rm Im} \left\{ H(f) \right \} \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$ | ||
− | *sondern zusätzlich auch noch die Hilbert–Korrespondenz zwischen Phasen– und Dämpfungsfunktion ⇒ $b(f) \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$ | + | *sondern zusätzlich auch noch die Hilbert–Korrespondenz zwischen der Phasen– und der Dämpfungsfunktion ⇒ $b(f) \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$ |
{{GraueBox|TEXT= | {{GraueBox|TEXT= | ||
$\text{Beispiel 5:}$ | $\text{Beispiel 5:}$ | ||
− | Ein Tiefpass besitze im Durchlassbereich – also für $\vert f \vert < f_{\rm G}$ – den Frequenzgang $H(f) = 1$ ⇒ $a(f) =0 | + | Ein Tiefpass besitze im "Durchlassbereich" – also für $\vert f \vert < f_{\rm G}$ – den Frequenzgang $H(f) = 1$ ⇒ $a(f) =0$ Neper ${\rm (Np)}$, während für größere Frequenzen die Dämpfungsfunktion $a(f)$ den konstanten Wert $a_{\rm S}$ (in Neper) besitzt. |
− | + | ||
− | + | [[Datei:P_ID1753__LZI_T_3_1_S5_neu.png|right|frame|Dämpfungs– und Phasenfunktion eines beispielhaften Minimum–Phasen–Tiefpasses|class=fit]] | |
− | |||
− | [[Datei:P_ID1753__LZI_T_3_1_S5_neu.png| | ||
+ | *In diesem "Sperrbereich" ist $H(f) = {\rm e}^{–a_{\rm S} }$ zwar sehr klein, aber nicht Null. | ||
*Soll der Tiefpass kausal und damit realisierbar sein, so muss die Phasenfunktion $b(f)$ gleich der Hilbert–Transformierten der Dämpfung $a(f)$ sein. | *Soll der Tiefpass kausal und damit realisierbar sein, so muss die Phasenfunktion $b(f)$ gleich der Hilbert–Transformierten der Dämpfung $a(f)$ sein. | ||
* Da die Hilbert–Transformierte einer Konstanten gleich Null ist, kann in gleicher Weise von der Funktion $a(f) - a_{\rm S}$ ausgegangen werden. | * Da die Hilbert–Transformierte einer Konstanten gleich Null ist, kann in gleicher Weise von der Funktion $a(f) - a_{\rm S}$ ausgegangen werden. | ||
+ | |||
+ | Diese in der Grafik gestrichelt eingezeichnete Funktion ist zwischen $±f_{\rm G}$ rechteckförmig und gleichzeitig negativ. | ||
− | + | Entsprechend der [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz#Einige_Paare_von_Hilbert.E2.80.93Korrespondenzen|Tabelle]] auf der letzten Seite gilt deshalb: | |
:$$b(f) = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm G} }\right \vert \hspace{0.05cm}.$$ | :$$b(f) = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm G} }\right \vert \hspace{0.05cm}.$$ | ||
Jeder andere Phasenverlauf würde dagegen zu einer akausalen Impulsantwort führen.}} | Jeder andere Phasenverlauf würde dagegen zu einer akausalen Impulsantwort führen.}} |
Aktuelle Version vom 9. Oktober 2021, 15:17 Uhr
Inhaltsverzeichnis
- 1 # ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL #
- 2 Voraussetzungen für das gesamte Kapitel „Realisierbare Systeme”
- 3 Real– und Imaginärteil einer kausalen Übertragungsfunktion
- 4 Hilbert–Transformation
- 5 Einige Paare von Hilbert–Korrespondenzen
- 6 Dämpfung und Phase von Minimum–Phasen–Systemen
- 7 Aufgaben zum Kapitel
- 8 Quellenverzeichnis
# ÜBERBLICK ZUM DRITTEN HAUPTKAPITEL #
In den beiden ersten Kapiteln wurden aus Darstellungsgründen meist Filterfunktionen mit reellwertigen Frequenzgängen betrachtet, so dass die dazugehörige Zeitfunktion symmetrisch zum Zeitnullpunkt ist. Die Impulsantwort eines realisierbaren Systems muss aber stets kausal sein, das heißt, es muss $h(t)$ für $t < 0$ identisch Null sein. Diese starke Asymmetrie der Zeitfunktion $h(t)$ bedeutet aber gleichzeitig, dass der Frequenzgang $H(f)$ eines realisierbaren Systems mit Ausnahme von $H(f) = K$ immer komplexwertig ist, wobei zwischen dessen Realteil und Imaginärteil ein fester Zusammenhang besteht.
Dieses dritte Kapitel bringt eine zusammenfassende Darstellung der Beschreibung kausaler realisierbarer Systeme, die sich auch von den mathematischen Methoden her von den bei akausalen Systemen üblichen Verfahren unterscheiden.
Im Einzelnen wird nachfolgend behandelt:
- die Hilbert–Transformation, die aussagt, wie Real– und Imaginärteil von $H(f)$ zusammenhängen,
- die Laplace–Transformation, die bei kausalem $h(t)$ eine weitere Spektralfunktion $H_{\rm L}(p)$ liefert,
- die Beschreibung realisierbarer Systeme durch das Pol–Nullstellen–Diagramm, sowie
- die Laplace–Rücktransformation unter Anwendung der Funktionentheorie (Residuensatz).
Zu diesem Kapitel empfehlen wir
- zur Vorbereitung das Lernvideo Rechnen mit komplexen Zahlen, sowie
- das interaktive Applet Kausale Systeme – Laplacetransformation - eine zusammenhängende Darstellung.
Voraussetzungen für das gesamte Kapitel „Realisierbare Systeme”
In den beiden ersten Kapiteln wurden meist reelle Übertragungsfunktionen $H(f)$ betrachtet, bei denen demzufolge die zugehörige Impulsantwort $h(t)$ stets symmetrisch zum Bezugszeitpunkt $t = 0$ ist. Solche Übertragungsfunktionen
- eignen sich, um grundlegende Zusammenhänge einfach zu erklären,
- sind aber leider aus Kausalitätsgründen nicht realisierbar.
Dies wird deutlich, wenn man sich die Definition der Impulsantwort betrachtet:
$\text{Definition:}$ Die Impulsantwort $h(t)$ ist gleich dem Ausgangssignal $y(t)$ des Systems, wenn am Eingang zum Zeitpunkt $t = 0$ ein unendlich kurzer Impuls mit unendlich großer Ampltude anliegt: $x(t) = δ(t)$. Man bezeichnet einen solchen Impuls als Diracimpuls.
Es ist offensichtlich, dass keine Impulsantwort realisiert werden kann, für die $h(t < 0) ≠ 0$ gilt.
$\text{Definition:}$ Bei einem kausalen System ist die Impulsantwort $h(t)$ für alle Zeiten $t < 0$ identisch Null.
Die einzige reelle Übertragungsfunktion, die der Kausalitätsbedingung „das Ausgangssignal kann nicht vor dem Eingangssignal beginnen” genügt, lautet:
- $$H(f) = K \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h(t) = K \cdot \delta(t).$$
Alle anderen reellwertigen Übertragungsfunktionen $H(f)$ beschreiben akausale Systeme und sind somit durch ein (elektrisches) Schaltungsnetzwerk nicht zu realisieren.
$\text{In anderen Worten:}$ Außer der Übertragungsfunktion $H(f) = K$ ist jede realistische Übertragungsfunktion komplex.
- Gilt zudem $K=1$, so bezeichnet man die Übertragungsfunktion als ideal.
- Der Ausgang $y(t)$ ist dann identische mit dem Eingang $x(t)$ – auch ohne Dämpfung oder Verstärkung.
Real– und Imaginärteil einer kausalen Übertragungsfunktion
Jede kausale Impulsantwort $h(t)$ kann als Summe eines geraden Anteils $h_{\rm g}(t)$ und eines ungeraden Anteils $h_{\rm u}(t)$ dargestellt werden:
- $$\begin{align*} h_{ {\rm g}}(t) & = {1}/{2}\cdot \big[ h(t) + h(-t) \big]\hspace{0.05cm},\\ h_{ {\rm u}}(t) & = {1}/{2}\cdot \big[ h(t) - h(-t) \big] = h_{ {\rm g}}(t) \cdot {\rm sign}(t)\hspace{0.05cm} .\end{align*}$$
Hierbei ist die sogenannte Signum–Funktion verwendet:
- $${\rm sign}(t) = \left\{ \begin{array}{c} -1 \\ +1 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} { t < 0,} \\ { t > 0.} \\ \end{array}$$
$\text{Beispiel 1:}$ Die Grafik zeigt diese Aufspaltung für eine kausale exponentiell abfallende Impulsantwort eines Tiefpasses erster Ordnung entsprechend Aufgabe 1.3Z:
- $$h(t) = \left\{ \begin{array}{c} 0 \\ 0.5/T \\ 1/T \cdot {\rm e}^{-t/T} \end{array} \right.\quad \begin{array}{c} {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \\ {\rm{f\ddot{u}r} } \end{array}\begin{array}{*{20}c} { t < 0\hspace{0.05cm},} \\ { t = 0\hspace{0.05cm},} \\{ t > 0\hspace{0.05cm}.} \end{array}$$
Man erkennt:
- Für positive Zeiten gilt $h_{\rm g}(t) = h_{\rm u}(t) = h(t)/2$.
- Für negative Zeiten unterscheiden sich $h_{\rm g}(t)$ und $h_{\rm u}(t)$ nur durch das Vorzeichen.
- Für alle Zeiten gilt $h(t) = h_{\rm g}(t) + h_{\rm u}(t)$, auch zum Zeitpunkt $t = 0$ (durch Kreise markiert).
Betrachten wir nun den gleichen Sachverhalt im Spektralbereich. Nach dem Zuordnungssatz gilt für die komplexe Übertragungsfunktion:
- $$H(f) = {\rm Re} \left\{ H(f) \right \} + {\rm j} \cdot {\rm Im} \left\{ H(f) \right \} ,$$
wobei folgende Zuordnung gilt:
- $${\rm Re} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm g}}(t)\hspace{0.05cm},$$
- $${\rm j} \cdot {\rm Im} \left\{ H(f) \right\} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\quad h_{ {\rm u}}(t)\hspace{0.05cm}.$$
Zunächst soll an einem weiteren Beispiel dieser Zusammenhang zwischen Real– und Imaginärteil von $H(f)$ herausgearbeitet werden.
$\text{Beispiel 2:}$ Wir gehen von einem Tiefpass erster Ordnung aus, für dessen Übertragungsfunktion gilt:
- $$H(f) = \frac{1}{1+{\rm j}\cdot f/f_{\rm G} } = \frac{1}{1+(f/f_{\rm G})^2}- {\rm j} \cdot \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2} \hspace{0.05cm}.$$
Hierbei gibt $f_{\rm G}$ die 3dB–Grenzfrequenz an, bei der $\vert H(f)\vert^2$ auf die Hälfte seines Maximums $($bei $f = 0)$ abgesunken ist. Die dazugehörige Impulsantwort $h(t)$ wurde bereits im obigen $\text{Beispiel 1}$ für $f_{\rm G} = 1/(2πT)$ dargestellt.
Die Grafik zeigt den Realteil (blau) und den Imaginärteil (rot) von $H(f)$. Grün–gestrichelt ist zudem der Betrag dargestellt.
Nachdem die Zeitfunktionen $h_{\rm g}(t)$ und $h_{\rm u}(t)$ über die Signumfunktion zusammenhängen, besteht auch
- zwischen dem Realteil ⇒ ${\rm Re} \{H(f)\}$
- und dem Imaginärteil ⇒ ${\rm Im} \{H(f)\}$
der Übertragungsfunktion eine feste Verknüpfung ⇒ die Hilbert–Transformation.
Diese wird nachfolgend beschrieben.
Hilbert–Transformation
Wir betrachten hier ganz allgemein zwei Zeitfunktionen $u(t)$ und $w(t) = \sign(t) · u(t)$.
- Die dazugehörigen Spektralfunktionen werden mit $U(f)$ und ${\rm j} · W(f)$ bezeichnet.
- Das heißt, in diesem Abschnitt gilt ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {\rm j} \cdot W(f) }$ und nicht die sonst übliche Fourierkorrespondenz ${w(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, W(f)}.$
Mit der Korrespondenz ${\rm sign}(t) \, \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \, {1}/({{\rm j} \, \pi f })$ erhält man nach Ausschreiben des Faltungsintegrals mit der Integrationsvariablen $ν$ :
- $${\rm j} \cdot W(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, U(f) \quad \Rightarrow \quad W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
Da aber gleichzeitig auch $u(t) = \sign(t) · w(t)$ zutrifft, gilt in gleicher Weise:
- $$U(f) = \frac{1}{{\rm j} \, \pi f }\, \star \, {\rm j} \cdot W(f) \quad \Rightarrow \quad U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu}}\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
Man hat diese „Integraltransformationen” nach ihrem Entdecker David Hilbert benannt.
$\text{Definition:}$ Beide Varianten der Hilbert–Transformation werden im weiteren Verlauf mit folgenden Kurzzeichen gekennzeichnet:
- $$W(f) \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad U(f) \hspace{0.8cm}{\rm bzw.}\hspace{0.8cm}W(f)= {\cal H}\left\{U(f) \right \}\hspace{0.05cm}.$$
- Zur Berechnung des durch die Pfeilspitze markierten Spektrums – hier $U(f)$ – wird von den beiden ansonsten identischen oberen Gleichungen die Gleichung mit positivem Vorzeichen genommen:
- $$U(f) = \frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{W(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
- Das durch den Kreis markierte Spektrum – hier $W(f)$ – ergibt sich aus der Gleichung mit negativem Vorzeichen:
- $$ W(f) = -\frac{1}{\pi }\int\limits_{-\infty}^{+\infty} { \frac{U(\nu)}{f - \nu} }\hspace{0.1cm}{\rm d}\nu \hspace{0.05cm}.$$
Bei doppelter Anwendung der Hilbert–Transformation erhält man wieder die ursprüngliche Funktion mit Vorzeichenwechsel, bei vierfacher Anwendung die ursprüngliche Funktion inklusive dem richtigen Vorzeichen:
- $${\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} = -U(f), \hspace{0.2cm} {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ {\cal H}\left\{ U(f) \right \} \right \} \right \} \right \}= U(f)\hspace{0.05cm}.$$
$\text{Beispiel 3:}$ In [Mar94][1] findet man die folgende Hilbert–Korrespondenz:
- $$\frac{1}{1+x^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{x}{1+x^2}\hspace{0.05cm}.$$
- Hierbei steht $x$ stellvertretend für eine geeignet normierte Zeit– oder Frequenzvariable.
- Benutzen wir beispielsweise $x = f/f_{\rm G}$ als normierte Frequenzvariable, so erhält man daraus die Korrespondenz:
- $$\frac{1}{1+(f/f_{\rm G})^2} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$
Ausgehend von der Gleichung
- $${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}$$
wird somit das auf im $\text{Beispiel 2}$ gefundene Ergebnis bestätigt:
- $${\rm Im} \left\{ H(f) \right \} = \frac{-f/f_{\rm G} }{1+(f/f_{\rm G})^2}\hspace{0.05cm}.$$
Einige Paare von Hilbert–Korrespondenzen
Zur Herleitung von Hilbert–Korrespondenzen geht man sehr pragmatisch vor, nämlich wie folgt:
- Man berechnet die Laplace–Transformierte $Y_{\rm L}(p)$ der Funktion $y(t)$, wie nachfolgend beschrieben. Diese ist bereits implizit kausal.
- Man wandelt die Spektralfunktion $Y_{\rm L}(p)$ in das zugehörige Fourierspektrum $Y(f)$ um und spaltet dieses in Real– und Imaginärteil auf. Dazu ersetzt man die Variable $p$ durch ${\rm j \cdot 2}πf.$
Der Real– und Imaginärteil – also ${\rm Re} \{Y(f)\}$ und ${\rm Im} \{Y(f)\}$ – sind somit ein Paar von Hilbert–Transformierten. Man ersetzt weiter
- die Frequenzvariable $f$ durch $x$,
- ${\rm Re} \{Y(f)\}$ durch $g(x)$, und
- ${\rm Im} \{Y(f)\}$ durch ${\cal H} \{g(x)\}$.
Die neue Variable $x$ kann sowohl eine (geeignet) normierte Frequenz oder auch eine (geeignet) normierte Zeit beschreiben. Somit ist die Hilbert–Transformation auf verschiedene Probleme anwendbar.
Die Tabelle zeigt einige solcher Hilbertpaare. Auf die Vorzeichen wurde verzichtet, so dass beide Richtungen gültig sind.
$\text{Beispiel 4:}$ Gilt beispielsweise ${\cal H} \{g(x)\} = f(x)$, so folgt daraus auch ${\cal H} \{f(x)\} = \, –g(x)$. Insbesondere gilt auch:
- $${\cal H}\left \{ \cos(x) \right\} = \sin(x)\hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\cal H}\left \{ \sin(x) \right\} = -\cos(x)\hspace{0.05cm}.$$
Dämpfung und Phase von Minimum–Phasen–Systemen
Eine wichtige Anwendung der Hilbert–Transformation stellt der Zusammenhang zwischen Dämpfung und Phase bei den so genannten Minimum–Phasen–Systemen dar. Im Vorgriff auf das folgende Kapitel Laplace–Transformation und p–Übertragungsfunktion sei erwähnt, dass diese Systeme in der rechten $p$–Halbebene weder Pole noch Nullstellen aufweisen dürfen.
Allgemein gilt für die Übertragungsfunktion $H(f)$ mit dem komplexen Übertragungsmaß $g(f)$ sowie der Dämpfungsfunktion $a(f)$ und der Phasenfunktion $b(f)$:
- $$H(f) = {\rm e}^{-g(f)} = {\rm e}^{-a(f)\hspace{0.05cm}- \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}b(f)} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} g(f) = a(f)+ {\rm j} \cdot b(f)\hspace{0.05cm}.$$
Bei den Minimum–Phasen–Systemen gilt nun aber nicht nur wie bei allen realisierbaren Systemen die Hilbert–Transformation
- bezüglich Imaginär– und Realteil ⇒ ${\rm Im} \left\{ H(f) \right \} \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, {\rm Re} \left\{ H(f) \right \}\hspace{0.01cm},$
- sondern zusätzlich auch noch die Hilbert–Korrespondenz zwischen der Phasen– und der Dämpfungsfunktion ⇒ $b(f) \, \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow \, a(f)\hspace{0.05cm}.$
$\text{Beispiel 5:}$ Ein Tiefpass besitze im "Durchlassbereich" – also für $\vert f \vert < f_{\rm G}$ – den Frequenzgang $H(f) = 1$ ⇒ $a(f) =0$ Neper ${\rm (Np)}$, während für größere Frequenzen die Dämpfungsfunktion $a(f)$ den konstanten Wert $a_{\rm S}$ (in Neper) besitzt.
- In diesem "Sperrbereich" ist $H(f) = {\rm e}^{–a_{\rm S} }$ zwar sehr klein, aber nicht Null.
- Soll der Tiefpass kausal und damit realisierbar sein, so muss die Phasenfunktion $b(f)$ gleich der Hilbert–Transformierten der Dämpfung $a(f)$ sein.
- Da die Hilbert–Transformierte einer Konstanten gleich Null ist, kann in gleicher Weise von der Funktion $a(f) - a_{\rm S}$ ausgegangen werden.
Diese in der Grafik gestrichelt eingezeichnete Funktion ist zwischen $±f_{\rm G}$ rechteckförmig und gleichzeitig negativ.
Entsprechend der Tabelle auf der letzten Seite gilt deshalb:
- $$b(f) = {a_{\rm S} }/{\pi} \cdot {\rm ln}\hspace{0.1cm}\left\vert \frac{f+f_{\rm G} }{f-f_{\rm G} }\right \vert \hspace{0.05cm}.$$
Jeder andere Phasenverlauf würde dagegen zu einer akausalen Impulsantwort führen.
Aufgaben zum Kapitel
Aufgabe 3.1: Kausalitätsbetrachtungen
Aufgabe 3.1Z: Hilbert-Transformierte
Quellenverzeichnis
- ↑ Marko, H.: Methoden der Systemtheorie. 3. Auflage. Berlin – Heidelberg: Springer, 1994.