Aufgaben:Aufgabe 1.5: Nachbildung des Jakes–Spektrums: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(4 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 5: Zeile 5:
 
Bei einem Mobilfunksystem macht sich der  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Ph.C3.A4nomenologische_Beschreibung_des_Dopplereffekts|Dopplereffekt]]  auch im Leistungsdichtespektrum der Dopplerfrequenz  $f_{\rm D}$  bemerkbar.  
 
Bei einem Mobilfunksystem macht sich der  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Ph.C3.A4nomenologische_Beschreibung_des_Dopplereffekts|Dopplereffekt]]  auch im Leistungsdichtespektrum der Dopplerfrequenz  $f_{\rm D}$  bemerkbar.  
  
Es ergibt sich das so genannte  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading|Jakes–Spektrum]], das für die maximale Dopplerfrequenz  $f_{\rm D, \ max} = 100 \ \rm Hz$  in der Grafik dargestellt ist. ${\it \Phi}_z(f_{\rm D})$  hat nur Anteile innerhalb des Bereichs  $± f_{\rm D, \ max}$, wobei gilt:
+
Es ergibt sich das so genannte  [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading|Jakes–Spektrum]], das für die maximale Dopplerfrequenz  $f_{\rm D, \ max} = 100 \ \rm Hz$  in der Grafik dargestellt ist.  ${\it \Phi}_z(f_{\rm D})$  hat nur Anteile innerhalb des Bereichs  $± f_{\rm D, \ max}$, wobei gilt:
 
:$${\it \Phi}_z(f_{\rm D}) = \frac{2 \cdot \sigma^2}{\pi \cdot f_{\rm D, \hspace{0.05cm} max}  \cdot \sqrt { 1 - (f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 } }
 
:$${\it \Phi}_z(f_{\rm D}) = \frac{2 \cdot \sigma^2}{\pi \cdot f_{\rm D, \hspace{0.05cm} max}  \cdot \sqrt { 1 - (f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 } }
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Was im Frequenzbereich durch das Leistungsdichtespektrum (LDS) ausgedrückt wird, beschreibt man im Zeitbereich durch die Autokorrelationsfunktion (AKF). Diese ergibt sich aus  ${\it \Phi}_z(f_{\rm D})$  durch die  [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral|Fourierrücktransformation]].
+
Was im Frequenzbereich durch das Leistungsdichtespektrum  $\rm (LDS)$  ausgedrückt wird, beschreibt man im Zeitbereich durch die Autokorrelationsfunktion  $\rm (AKF)$.  Diese ergibt sich aus  ${\it \Phi}_z(f_{\rm D})$  durch die  [[Signaldarstellung/Fouriertransformation_und_-r%C3%BCcktransformation#Das_zweite_Fourierintegral|Fourierrücktransformation]].
  
Mit der <i>Besselfunktion</i> erster Art und nullter Ordnung &nbsp;$({\rm J}_0)$&nbsp; erhält man:
+
Mit der Besselfunktion erster Art und nullter Ordnung &nbsp;$({\rm J}_0)$&nbsp; erhält man:
 
:$$\varphi_z ({\rm \Delta}t) =  2 \sigma^2 \cdot {\rm J_0}(2\pi \cdot f_{\rm D, \hspace{0.05cm} max} \cdot {\rm \Delta}t)\hspace{0.05cm}.$$
 
:$$\varphi_z ({\rm \Delta}t) =  2 \sigma^2 \cdot {\rm J_0}(2\pi \cdot f_{\rm D, \hspace{0.05cm} max} \cdot {\rm \Delta}t)\hspace{0.05cm}.$$
  
Um den Dopplereffekt und damit eine Relativbewegung zwischen Sender und Empfänger &ndash; bei einer Systemsimulation zu berücksichtigen, werden im&nbsp; [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Modellierung_von_nichtfrequenzselektivem_Fading|Rayleigh&ndash;Kanalmodell]]&nbsp; zwei digitale Filter eingefügt, jeweils mit dem Frequenzgang&nbsp; $H_{\rm DF}(f_{\rm D})$.  
+
Um den Dopplereffekt &ndash; und damit eine Relativbewegung zwischen Sender und Empfänger &ndash; bei einer Systemsimulation zu berücksichtigen, werden im&nbsp; [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Modellierung_von_nichtfrequenzselektivem_Fading|Rayleigh&ndash;Kanalmodell]]&nbsp; zwei digitale Filter eingefügt, jeweils mit dem Frequenzgang&nbsp; $H_{\rm DF}(f_{\rm D})$.  
  
 
Die Dimensionierung dieser Filter ist Inhalt dieser Aufgabe.
 
Die Dimensionierung dieser Filter ist Inhalt dieser Aufgabe.
*Wir beschränken uns hier auf den Zweig zur Generierung des Realteils&nbsp; $x(t)$. Für den Imaginärteil&nbsp; $y(t)$&nbsp; ergeben sich genau gleiche Verhältnisse.
+
*Wir beschränken uns hier auf den Zweig zur Generierung des Realteils&nbsp; $x(t)$.&nbsp; Für den Imaginärteil&nbsp; $y(t)$&nbsp; ergeben sich genau gleiche Verhältnisse.
*Am Eingang des im&nbsp; [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Frequenzselektives_Fading_vs._nichtfrequenzselektives_Fading|Rayleigh&ndash;Kanalmodell]]&nbsp; linken digitalen Filters liegt weißes Gaußsches Rauschen&nbsp; $n(t)$&nbsp; mit der Varianz&nbsp; $\sigma^2 = 0.5$&nbsp; an.  
+
*Am Eingang des im&nbsp; [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Modellierung_von_nichtfrequenzselektivem_Fading|Rayleigh&ndash;Kanalmodell]]&nbsp; linken digitalen Filters liegt weißes Gaußsches Rauschen&nbsp; $n(t)$&nbsp; mit der Varianz&nbsp; $\sigma^2 = 0.5$&nbsp; an.  
 
*Die Realteilkomponente ergibt sich dann gemäß der Faltung zu
 
*Die Realteilkomponente ergibt sich dann gemäß der Faltung zu
 
:$$x(t) = n(t) \star h_{\rm DF}(t) \hspace{0.05cm}.$$
 
:$$x(t) = n(t) \star h_{\rm DF}(t) \hspace{0.05cm}.$$
 +
 +
 +
  
  
Zeile 37: Zeile 40:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Wert hat das Jakes&ndash;Spektrum des Realteils bei der Dopplerfrequenz $f_{\rm D} = 0$?
+
{Welchen Wert hat das Jakes&ndash;Spektrum des Realteils bei der Dopplerfrequenz&nbsp; $f_{\rm D} = 0$?
 
|type="{}"}
 
|type="{}"}
 
${\it \Phi}_x(f_{\rm D} = 0)\ = \ $ { 1.59 } $\ \cdot  10^{\rm &ndash;3} \ 1/{\rm Hz}$
 
${\it \Phi}_x(f_{\rm D} = 0)\ = \ $ { 1.59 } $\ \cdot  10^{\rm &ndash;3} \ 1/{\rm Hz}$
  
{Welche Dimensionierung ist richtig? $K$ ist eine beliebige Konstante.
+
{Welche Dimensionierung ist richtig, wobei &nbsp;$K$&nbsp; eine geeignet gewählte Konstante ist?
|type="[]"}
+
|type="()"}
- Es gilt $H_{\rm DF}(f_{\rm D}) = K \cdot {\it \Phi}_x(f_{\rm D})$.
+
- Es gilt&nbsp; $H_{\rm DF}(f_{\rm D}) = K \cdot {\it \Phi}_x(f_{\rm D})$.
+ Es gilt $|H_{\rm DF}(f_{\rm D})|^2 = K \cdot {\it \Phi}_x(f_{\rm D})$
+
+ Es gilt&nbsp; $|H_{\rm DF}(f_{\rm D})|^2 = K \cdot {\it \Phi}_x(f_{\rm D})$
  
{Aus welcher Bedingung lässt sich die Konstante $K$ bestimmen?
+
{Aus welcher Bedingung lässt sich die Konstante&nbsp; $K$&nbsp; bestimmen?
|type="[]"}
+
|type="()"}
- $K$ kann beliebig gewählt werden.  
+
- $K$&nbsp; kann beliebig gewählt werden.  
- Das Integral über $|H_{\rm DF}(f_{\rm D})|$ muss $1$ ergeben.
+
- Das Integral über&nbsp; $|H_{\rm DF}(f_{\rm D})|$&nbsp; muss&nbsp; $1$&nbsp; ergeben.
+ Das Integral über $|H_{\rm DF}(f_{\rm D})|^2$ muss $1$ ergeben.
+
+ Das Integral über&nbsp; $|H_{\rm DF}(f_{\rm D})|^2$&nbsp; muss&nbsp; $1$&nbsp; ergeben.
  
{Ist $H_{\rm DF}(f)$ durch die beiden Bedingungen (2) und (3) eindeutig festgelegt?
+
{Ist&nbsp; $H_{\rm DF}(f)$&nbsp; durch die beiden Bedingungen gemäß&nbsp; '''(2)'''&nbsp; und&nbsp; '''(3)'''&nbsp; eindeutig festgelegt?
 
|type="()"}
 
|type="()"}
 
- Ja.
 
- Ja.
Zeile 60: Zeile 63:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Jakes&ndash;Spektrum des Realteils ist halb so groß wie das resultierende Spektrum ${\it \Phi}_z(f)$:
+
'''(1)'''&nbsp; Das Jakes&ndash;Spektrum des Realteils ist halb so groß wie das resultierende Spektrum&nbsp; ${\it \Phi}_z(f)$:
 
:$${\it \Phi}_x(f_{\rm D} = 0) = {\it \Phi}_y(f_{\rm D} = 0) = \frac{{\it \Phi}_z(f_{\rm D} = 0)}{2}= \frac{\sigma^2}{\pi \cdot f_{\rm D, \hspace{0.05cm} max}} =  
 
:$${\it \Phi}_x(f_{\rm D} = 0) = {\it \Phi}_y(f_{\rm D} = 0) = \frac{{\it \Phi}_z(f_{\rm D} = 0)}{2}= \frac{\sigma^2}{\pi \cdot f_{\rm D, \hspace{0.05cm} max}} =  
 
  \frac{0.5}{\pi \cdot 100\,\,{\rm Hz}} \hspace{0.15cm} \underline{ = 1.59 \cdot 10^{-3}\,\,{\rm Hz^{-1}}}
 
  \frac{0.5}{\pi \cdot 100\,\,{\rm Hz}} \hspace{0.15cm} \underline{ = 1.59 \cdot 10^{-3}\,\,{\rm Hz^{-1}}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 +
 +
  
 
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:  
 
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:  
*Das Eingangssignal $n(t)$ besitzt ein weißes (konstantes) LDS ${\it \Phi}_n(f_{\rm D})$.  
+
*Das Eingangssignal&nbsp; $n(t)$&nbsp; besitzt ein weißes (konstantes) LDS&nbsp; ${\it \Phi}_n(f_{\rm D})$.  
 
*Für das LDS am Ausgang gilt dann:
 
*Für das LDS am Ausgang gilt dann:
 
:$${\it \Phi}_x(f_{\rm D}) = {\it \Phi}_n(f_{\rm D}) \cdot | H_{\rm DF}(f_{\rm D}|^2
 
:$${\it \Phi}_x(f_{\rm D}) = {\it \Phi}_n(f_{\rm D}) \cdot | H_{\rm DF}(f_{\rm D}|^2
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>. Nur wenn diese Bedingung erfüllt ist, hat das Signal $x(t)$ die gleiche Varianz $\sigma^2$ wie das Rauschsignal $n(t)$.
+
 
 +
 
 +
'''(3)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 3</u>.  
 +
*Nur wenn diese Bedingung erfüllt ist, hat das Signal&nbsp; $x(t)$&nbsp; die gleiche Varianz&nbsp; $\sigma^2$&nbsp; wie das Rauschsignal&nbsp; $n(t)$.
 +
 
 +
 
  
  
 
'''(4)'''&nbsp; <u>Richtig ist NEIN</u>:  
 
'''(4)'''&nbsp; <u>Richtig ist NEIN</u>:  
*Die beiden Bedingungen nach den Teilaufgaben (2) und (3) beziehen sich nur auf die Betragsfunktion.  
+
*Die beiden Bedingungen nach den Teilaufgaben&nbsp; (2)&nbsp; und&nbsp; (3)&nbsp; beziehen sich nur auf die Betragsfunktion.  
 
*Für die Phase des digitalen Filters gibt es keine Vorschrift.  
 
*Für die Phase des digitalen Filters gibt es keine Vorschrift.  
*Diese ist frei wählbar. Meist wählt man diese so, dass sich ein minimalphasiges Netzwerk ergibt.  
+
*Diese ist frei wählbar.&nbsp; Meist wählt man diese so, dass sich ein minimalphasiges Netzwerk ergibt.  
*In diesem Fall hat dann die Impulsantwort $h_{\rm DF}(t)$ die geringst mögliche Ausdehnung.
+
*In diesem Fall hat dann die Impulsantwort&nbsp; $h_{\rm DF}(t)$&nbsp; die geringst mögliche Ausdehnung.
 +
 
 +
 
 +
[[Datei:P_ID2125__Mob_A_1_5d.png|right|frame|Approximation des Jakes–Spektrums und der AKF]]
 +
 
 +
Die Grafik zeigt das Ergebnis der Approximation.&nbsp; Die roten Kurven wurden simulativ über&nbsp; $100\hspace{0.05cm}000$&nbsp; Abtastwerte ermittelt.  
  
[[Datei:P_ID2125__Mob_A_1_5d.png|center|frame|Approximation des Jakes–Spektrums und der AKF]]
+
Man erkennt:
  
Die Grafik zeigt das Ergebnis der Approximation. Die roten Kurven wurden simulativ über $100\hspace{0.05cm}000$ Abtastwerte ermittelt. Man erkennt:
+
* Das Jakes&ndash;Leistungsdichtespektrum&nbsp; (linke Grafik)&nbsp; lässt sich aufgrund des senkrechten Abfalls bei&nbsp; $&plusmn; f_{\rm D, \ max}$&nbsp; nur sehr ungenau nachbilden.
* Das Jakes&ndash;Leistungsdichtespektrum (linke Grafik) lässt sich aufgrund des senkrechten Abfalls bei $&plusmn; f_{\rm D, \ max}$ nur sehr ungenau nachbilden.
+
* Für den Zeitbereich bedeutet dies, dass die AKF sehr viel schneller abfällt, als es die Theorie besagt.  
* Für den Zeitbereich bedeutet dies, dass die AKF sehr viel schneller abfällt, als es die Theorie besagt. Für kleine $\Delta t$&ndash;Werte ist die Approximation aber sehr gut (rechte Grafik).
+
*Für kleine&nbsp; $\Delta t$&ndash;Werte ist die Approximation aber sehr gut&nbsp; (rechte Grafik).
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 12. Mai 2020, 14:12 Uhr

Betrachtetes Jakes–Spektrum

Bei einem Mobilfunksystem macht sich der  Dopplereffekt  auch im Leistungsdichtespektrum der Dopplerfrequenz  $f_{\rm D}$  bemerkbar.

Es ergibt sich das so genannte  Jakes–Spektrum, das für die maximale Dopplerfrequenz  $f_{\rm D, \ max} = 100 \ \rm Hz$  in der Grafik dargestellt ist.  ${\it \Phi}_z(f_{\rm D})$  hat nur Anteile innerhalb des Bereichs  $± f_{\rm D, \ max}$, wobei gilt:

$${\it \Phi}_z(f_{\rm D}) = \frac{2 \cdot \sigma^2}{\pi \cdot f_{\rm D, \hspace{0.05cm} max} \cdot \sqrt { 1 - (f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 } } \hspace{0.05cm}.$$

Was im Frequenzbereich durch das Leistungsdichtespektrum  $\rm (LDS)$  ausgedrückt wird, beschreibt man im Zeitbereich durch die Autokorrelationsfunktion  $\rm (AKF)$.  Diese ergibt sich aus  ${\it \Phi}_z(f_{\rm D})$  durch die  Fourierrücktransformation.

Mit der Besselfunktion erster Art und nullter Ordnung  $({\rm J}_0)$  erhält man:

$$\varphi_z ({\rm \Delta}t) = 2 \sigma^2 \cdot {\rm J_0}(2\pi \cdot f_{\rm D, \hspace{0.05cm} max} \cdot {\rm \Delta}t)\hspace{0.05cm}.$$

Um den Dopplereffekt – und damit eine Relativbewegung zwischen Sender und Empfänger – bei einer Systemsimulation zu berücksichtigen, werden im  Rayleigh–Kanalmodell  zwei digitale Filter eingefügt, jeweils mit dem Frequenzgang  $H_{\rm DF}(f_{\rm D})$.

Die Dimensionierung dieser Filter ist Inhalt dieser Aufgabe.

  • Wir beschränken uns hier auf den Zweig zur Generierung des Realteils  $x(t)$.  Für den Imaginärteil  $y(t)$  ergeben sich genau gleiche Verhältnisse.
  • Am Eingang des im  Rayleigh–Kanalmodell  linken digitalen Filters liegt weißes Gaußsches Rauschen  $n(t)$  mit der Varianz  $\sigma^2 = 0.5$  an.
  • Die Realteilkomponente ergibt sich dann gemäß der Faltung zu
$$x(t) = n(t) \star h_{\rm DF}(t) \hspace{0.05cm}.$$





Hinweise:



Fragebogen

1

Welchen Wert hat das Jakes–Spektrum des Realteils bei der Dopplerfrequenz  $f_{\rm D} = 0$?

${\it \Phi}_x(f_{\rm D} = 0)\ = \ $

$\ \cdot 10^{\rm –3} \ 1/{\rm Hz}$

2

Welche Dimensionierung ist richtig, wobei  $K$  eine geeignet gewählte Konstante ist?

Es gilt  $H_{\rm DF}(f_{\rm D}) = K \cdot {\it \Phi}_x(f_{\rm D})$.
Es gilt  $|H_{\rm DF}(f_{\rm D})|^2 = K \cdot {\it \Phi}_x(f_{\rm D})$

3

Aus welcher Bedingung lässt sich die Konstante  $K$  bestimmen?

$K$  kann beliebig gewählt werden.
Das Integral über  $|H_{\rm DF}(f_{\rm D})|$  muss  $1$  ergeben.
Das Integral über  $|H_{\rm DF}(f_{\rm D})|^2$  muss  $1$  ergeben.

4

Ist  $H_{\rm DF}(f)$  durch die beiden Bedingungen gemäß  (2)  und  (3)  eindeutig festgelegt?

Ja.
Nein.


Musterlösung

(1)  Das Jakes–Spektrum des Realteils ist halb so groß wie das resultierende Spektrum  ${\it \Phi}_z(f)$:

$${\it \Phi}_x(f_{\rm D} = 0) = {\it \Phi}_y(f_{\rm D} = 0) = \frac{{\it \Phi}_z(f_{\rm D} = 0)}{2}= \frac{\sigma^2}{\pi \cdot f_{\rm D, \hspace{0.05cm} max}} = \frac{0.5}{\pi \cdot 100\,\,{\rm Hz}} \hspace{0.15cm} \underline{ = 1.59 \cdot 10^{-3}\,\,{\rm Hz^{-1}}} \hspace{0.05cm}.$$


(2)  Richtig ist der Lösungsvorschlag 2:

  • Das Eingangssignal  $n(t)$  besitzt ein weißes (konstantes) LDS  ${\it \Phi}_n(f_{\rm D})$.
  • Für das LDS am Ausgang gilt dann:
$${\it \Phi}_x(f_{\rm D}) = {\it \Phi}_n(f_{\rm D}) \cdot | H_{\rm DF}(f_{\rm D}|^2 \hspace{0.05cm}.$$


(3)  Richtig ist der Lösungsvorschlag 3.

  • Nur wenn diese Bedingung erfüllt ist, hat das Signal  $x(t)$  die gleiche Varianz  $\sigma^2$  wie das Rauschsignal  $n(t)$.



(4)  Richtig ist NEIN:

  • Die beiden Bedingungen nach den Teilaufgaben  (2)  und  (3)  beziehen sich nur auf die Betragsfunktion.
  • Für die Phase des digitalen Filters gibt es keine Vorschrift.
  • Diese ist frei wählbar.  Meist wählt man diese so, dass sich ein minimalphasiges Netzwerk ergibt.
  • In diesem Fall hat dann die Impulsantwort  $h_{\rm DF}(t)$  die geringst mögliche Ausdehnung.


Approximation des Jakes–Spektrums und der AKF

Die Grafik zeigt das Ergebnis der Approximation.  Die roten Kurven wurden simulativ über  $100\hspace{0.05cm}000$  Abtastwerte ermittelt.

Man erkennt:

  • Das Jakes–Leistungsdichtespektrum  (linke Grafik)  lässt sich aufgrund des senkrechten Abfalls bei  $± f_{\rm D, \ max}$  nur sehr ungenau nachbilden.
  • Für den Zeitbereich bedeutet dies, dass die AKF sehr viel schneller abfällt, als es die Theorie besagt.
  • Für kleine  $\Delta t$–Werte ist die Approximation aber sehr gut  (rechte Grafik).