Aufgaben:Aufgabe 4.7: Zum RAKE-Empfänger: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Nachrichtentechnische Aspekte von UMTS}}
 
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Nachrichtentechnische Aspekte von UMTS}}
  
[[Datei:P_ID1976__Mod_Z_5_5.png|right|frame|Zweiwegekanal & RAKE–Empfänger]]
+
[[Datei:P_ID1976__Mod_Z_5_5.png|right|frame|Zweiwegekanal & RAKE]]
  
 
Die Grafik zeigt einen Zweiwegekanal (gelbe Hinterlegung). Die entsprechende Beschreibungsgleichung lautet:
 
Die Grafik zeigt einen Zweiwegekanal (gelbe Hinterlegung). Die entsprechende Beschreibungsgleichung lautet:
Zeile 8: Zeile 8:
 
:$$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$
 
:$$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$
  
Die Verzögerung auf dem Nebenpfad sei  $\tau = 1 \ \rm µ s$. Darunter gezeichnet ist die Struktur eines RAKE–Empfängers (grüne Hinterlegung) mit den allgemeinen Koeffizienten  $K, h_{0}, h_{1}, \tau_{0}$  und  $\tau_{1}$.
+
Die Verzögerung auf dem Nebenpfad sei  $\tau = 1 \ \rm µ s$. Darunter gezeichnet ist die Struktur eines RAKE–Empfängers (grüne Hinterlegung) mit den allgemeinen Koeffizienten  $K, \ h_{0}, \ h_{1}, \ \tau_{0}$  und  $\tau_{1}$.
  
 
Der RAKE–Empfänger hat die Aufgabe, die Energie der beiden Signalpfade zu bündeln und dadurch die Entscheidung sicherer zu machen. Die gemeinsame Impulsantwort von Kanal und RAKE–Empfänger kann in der Form
 
Der RAKE–Empfänger hat die Aufgabe, die Energie der beiden Signalpfade zu bündeln und dadurch die Entscheidung sicherer zu machen. Die gemeinsame Impulsantwort von Kanal und RAKE–Empfänger kann in der Form
Zeile 14: Zeile 14:
 
:$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$
 
:$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$
  
angegeben werden, allerdings nur dann, wenn die RAKE–Koeffizienten  $h_{0}, h_{1}, \tau_{0}$  und  $\tau_{1}$  geeignet gewählt werden. Der Hauptanteil von  $h_{\rm KR}(t)$  soll bei  $t = \tau$  liegen.
+
angegeben werden, allerdings nur dann, wenn die RAKE–Koeffizienten  $h_{0}, \ h_{1}, \ \tau_{0}$  und  $\tau_{1}$  geeignet gewählt werden. Der Hauptanteil von  $h_{\rm KR}(t)$  soll bei  $t = \tau$  liegen.
  
 
Die Konstante  $K$  ist aus Normierungsgründen notwendig. Um den Einfluss von AWGN–Rauschen nicht zu verfälschen, muss folgende Bedingung erfüllt sein:
 
Die Konstante  $K$  ist aus Normierungsgründen notwendig. Um den Einfluss von AWGN–Rauschen nicht zu verfälschen, muss folgende Bedingung erfüllt sein:
 
:$$K= \frac{1}{h_0^2 + h_1^2}.$$
 
:$$K= \frac{1}{h_0^2 + h_1^2}.$$
  
Gesucht sind außer den geeigneten RAKE–Parametern auch die Signale  $r(t)$  und  $b(t)$, wenn  $s(t)$  ein Rechteck der Höhe  $1$  und der Breite  $T = 5 \ \rm µ s$  ist.
+
Gesucht sind außer den geeigneten RAKE–Parametern auch die Signale  $r(t)$  und  $b(t)$, wenn  $s(t)$  ein Rechteck der Höhe  $1$  und der Breite  $T = 5 \ \rm µ s$  beschreibt.
  
  
Zeile 39: Zeile 39:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Welche Aussagen gelten für die Kanalimpulsantwort $h_{\rm K}(t)$?
+
{Welche Aussagen gelten für die Kanalimpulsantwort&nbsp; $h_{\rm K}(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ $h_{\rm K}(t)$ besteht aus zwei Diracfunktionen.
+
+ $h_{\rm K}(t)$&nbsp; besteht aus zwei Diracfunktionen.
- $h_{\rm K}(t)$ ist komplexwertig.
+
- $h_{\rm K}(t)$&nbsp; ist komplexwertig.
- $h_{\rm K}(t)$ ist eine mit der Verzögerungszeit $\tau$ periodische Funktion.
+
- $h_{\rm K}(t)$&nbsp; ist eine mit der Verzögerungszeit&nbsp; $\tau$&nbsp; periodische Funktion.
  
{Welche Aussagen gelten für den Kanalfrequenzgang $H_{\rm K}(f)$?
+
{Welche Aussagen gelten für den Kanalfrequenzgang&nbsp; $H_{\rm K}(f)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
- Es gilt $H_{\rm K}(f = 0) = 2$.
+
- Es gilt&nbsp; $H_{\rm K}(f = 0) = 2$.
+ $H_{\rm K}(f)$ ist komplexwertig.
+
+ $H_{\rm K}(f)$&nbsp; ist komplexwertig.
+ $|H_{\rm K}(f)$| ist eine mit der Frequenz $1/ \tau$ periodische Funktion.
+
+ $|H_{\rm K}(f)|$&nbsp; ist eine mit der Frequenz&nbsp; $1/ \tau$&nbsp; periodische Funktion.
  
{Setzen Sie $K = 1, h_{0} = 0.6$, $h_{1} = 0.4$. Bestimmen Sie die Verzögerungen $\tau_{0}$ und $\tau_{1}$, damit die $h_{\rm KR}(t)$–Gleichung mit $A_{0} = A_{2}$ erfüllt wird.
+
{Setzen Sie&nbsp; $K = 1, \ h_{0} = 0.6$&nbsp; und &nbsp; $h_{1} = 0.4$. Bestimmen Sie die Verzögerungen&nbsp; $\tau_{0}$&nbsp; und&nbsp; $\tau_{1}$, damit die&nbsp; $h_{\rm KR}(t)$–Gleichung mit&nbsp; $A_{0} = A_{2}$&nbsp; erfüllt wird.
 
|type="{}"}
 
|type="{}"}
 
$\tau_{0} \ = \ $ { 1 3% } $\ \rm &micro; s$
 
$\tau_{0} \ = \ $ { 1 3% } $\ \rm &micro; s$
 
$\tau_{1} \ = \ $ { 0 3% } $\ \rm&micro; s$
 
$\tau_{1} \ = \ $ { 0 3% } $\ \rm&micro; s$
  
{Welcher Wert ist für die Konstante $K$ zu wählen?
+
{Welcher Wert ist für die Konstante&nbsp; $K$&nbsp; zu wählen?
 
|type="{}"}
 
|type="{}"}
 
$K \ = \ $ { 1.923 3% }
 
$K \ = \ $ { 1.923 3% }
  
{Welche Aussagen gelten für die Signale $r(t)$ und $b(t)$?
+
{Welche Aussagen gelten für die Signale&nbsp; $r(t)$&nbsp; und&nbsp; $b(t)$&nbsp;?
 
|type="[]"}
 
|type="[]"}
+ Der Maximalwert von $r(t)$ ist $1$.
+
+ Der Maximalwert von&nbsp; $r(t)$&nbsp; ist&nbsp; $1$.
- Die Breite von $r(t)$ ist $7 \ \rm &micro; s$.
+
- Die Breite von&nbsp; $r(t)$&nbsp; ist&nbsp; $7 \ \rm &micro; s$.
- Der Maximalwert von $b(t)$ ist $1 \ \rm &micro; s$.
+
- Der Maximalwert von&nbsp; $b(t)$&nbsp; ist&nbsp; $1 \ \rm &micro; s$.
+ Die Breite von $b(t)$ ist $7 \ \rm &micro; s$.
+
+ Die Breite von&nbsp; $b(t)$&nbsp; ist&nbsp; $7 \ \rm &micro; s$.
 
</quiz>
 
</quiz>
  
Zeile 72: Zeile 72:
  
 
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
 
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
*Die Impulsantwort $h_{\rm K}(t)$ ergibt sich als das Empfangssignal $r(t)$, wenn am Eingang ein Diracimpuls anliegt $\Rightarrow s(t) = \delta(t)$.
+
*Die Impulsantwort&nbsp; $h_{\rm K}(t)$&nbsp; ergibt sich als das Empfangssignal&nbsp; $r(t)$, wenn am Eingang ein Diracimpuls anliegt&nbsp; $\Rightarrow s(t) = \delta(t)$.
* Daraus folgt
+
* Daraus folgt:
 
:$$h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$
 
:$$h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$
 +
  
  
 
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
 
'''(2)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 2 und 3</u>:
*Der Kanalfrequenzgang $H_{\rm K}(f)$ ist definitionsgemäß die Fouriertransformierte der Impulsantwort $h_{\rm K}(t)$. Mit dem Verschiebungssatz ergibt sich hierfür:
+
*Der Kanalfrequenzgang&nbsp; $H_{\rm K}(f)$&nbsp; ist definitionsgemäß die Fouriertransformierte der Impulsantwort&nbsp; $h_{\rm K}(t)$. Mit dem Verschiebungssatz ergibt sich hierfür:
 
:$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
 
:$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
 
*Der erste Lösungsvorschlag ist dementsprechend falsch im Gegensatz zu den beiden anderen:
 
*Der erste Lösungsvorschlag ist dementsprechend falsch im Gegensatz zu den beiden anderen:
 
   
 
   
*$H_{\rm K}(f)$ ist komplexwertig und der Betrag ist periodisch mit $1/\tau$, wie die nachfolgende Rechnung zeigt:
+
*$H_{\rm K}(f)$&nbsp; ist komplexwertig und der Betrag ist periodisch mit&nbsp; $1/\tau$, wie die nachfolgende Rechnung zeigt:
 
:$$|H_{\rm K}(f)|^2  = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 =  \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] +  2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
 
:$$|H_{\rm K}(f)|^2  = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 =  \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] +  2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
 
:$$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$
*Für $f = 0$ ist $|H_{\rm K}(f)| = 1$. Im jeweiligen Frequenzabstand $1/\tau$ wiederholt sich dieser Wert.
+
*Für&nbsp; $f = 0$&nbsp; ist&nbsp; $|H_{\rm K}(f)| = 1$. Im jeweiligen Frequenzabstand&nbsp; $1/\tau$&nbsp; wiederholt sich dieser Wert.
  
  
'''(3)'''&nbsp; Wir setzen zunächst vereinbarungsgemäß $K = 1$. Insgesamt kommt man über vier Wege von $s(t)$ zum Ausgangssignal $b(t)$. Um die vorgegebene $h_{\rm KR}(t)$–Gleichung zu erfüllen, muss entweder $\tau_{0} = 0$ gelten oder $\tau_{1}= 0$. Mit $\tau_{0} = 0$ erhält man für die Impulsantwort:
+
 
 +
'''(3)'''&nbsp; Wir setzen zunächst vereinbarungsgemäß&nbsp; $K = 1$. Insgesamt kommt man über vier Wege von&nbsp; $s(t)$&nbsp; zum Ausgangssignal&nbsp; $b(t)$.  
 +
*Um die vorgegebene&nbsp; $h_{\rm KR}(t)$–Gleichung zu erfüllen, muss entweder&nbsp; $\tau_{0} = 0$&nbsp; gelten oder&nbsp; $\tau_{1}= 0$. Mit&nbsp; $\tau_{0} = 0$&nbsp; erhält man für die Impulsantwort:
 
:$$ h_{\rm KR}(t) \ = \ 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
 
:$$ h_{\rm KR}(t) \ = \ 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann $\tau_{1} = \tau$ gewählt werden. Mit $h_{0} = 0.6$ und $h_{1} = 0.4$ erhält man dann $A_{0} \neq A_{2}$:
+
*Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann&nbsp; $\tau_{1} = \tau$&nbsp; gewählt werden. Mit&nbsp; $h_{0} = 0.6$&nbsp; und&nbsp; $h_{1} = 0.4$&nbsp; erhält man dann&nbsp; $A_{0} \neq A_{2}$:
 
:$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) \hspace{-0.05cm}+\hspace{-0.05cm}0.48 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
:$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) \hspace{-0.05cm}+\hspace{-0.05cm}0.48 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
Dagegen ergibt sich mit $h_{0} = 0.6$, $h_{1} = 0.4, \tau_{0} = \tau$ und $\tau_{1} = 0$:
+
*Dagegen ergibt sich mit&nbsp; $h_{0} = 0.6$,&nbsp; $h_{1} = 0.4,&nbsp; \tau_{0} = \tau$&nbsp; und&nbsp; $\tau_{1} = 0$:
:$$h_{\rm KR}(t)= 0.6 \cdot h_0 \cdot \delta (t - \tau ) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_0 \cdot \delta (t - 2\tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.6 \cdot h_1 \cdot \delta (t) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.52 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.24 \cdot[ \delta (t ) +\delta (t - 2\tau)] \hspace{0.05cm}.$$   
+
:$$h_{\rm KR}(t)= 0.6 \cdot h_0 \cdot \delta (t - \tau ) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_0 \cdot \delta (t - 2\tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.6 \cdot h_1 \cdot \delta (t) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.52 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.24 \cdot \big[ \delta (t ) +\delta (t - 2\tau)\big] \hspace{0.05cm}.$$   
Hier ist die Zusatzbedingung $A_{0} = A_{2}$ erfüllt. Somit lautet das gesuchte Ergebnis:
+
*Hier ist die Zusatzbedingung&nbsp; $A_{0} = A_{2}$&nbsp; erfüllt. Somit lautet das gesuchte Ergebnis:
:$$\tau_0 = \tau \hspace{0.15cm}\underline {= 1\,{\rm \mu s}} \hspace{0.05cm},\hspace{0.2cm}\tau_1 \hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$
+
:$$\tau_0 = \tau \hspace{0.15cm}\underline {= 1\,{\rm &micro; s}} \hspace{0.05cm},\hspace{0.2cm}\tau_1 \hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$
 +
 
  
  
 
'''(4)'''&nbsp; Es gilt entsprechend der angegebenen Gleichung
 
'''(4)'''&nbsp; Es gilt entsprechend der angegebenen Gleichung
 
:$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52}\hspace{0.15cm}\underline { \approx 1.923 } \hspace{0.05cm}.$$
 
:$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52}\hspace{0.15cm}\underline { \approx 1.923 } \hspace{0.05cm}.$$
Damit erhält man für die gemeinsame Impulsantwort (es gilt $0.24/0.52 = 6/13$):
+
*Damit erhält man für die gemeinsame Impulsantwort&nbsp; (es gilt&nbsp; $0.24/0.52 = 6/13$):
 
:$$h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
 
:$$h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Für das Empfangssignal $r(t)$ und für das RAKE–Ausgangssignal $b(t)$ gilt:
+
 
:$$ r(t) \ = \ 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
+
'''(5)'''&nbsp; Für das Empfangssignal&nbsp; $r(t)$&nbsp; und für das RAKE–Ausgangssignal&nbsp; $b(t)$&nbsp; gelten:
:$$ b(t) \ = \ \frac{6}{13} \cdot s(t) + 1.00 \cdot s (t - 1\,{\rm \mu s}) + \frac{6}{13} \cdot s (t - 2\,{\rm \mu s}) \hspace{0.05cm}.$$
 
 
[[Datei:P_ID1980__Mod_Z_5_5e.png|right|frame|Signale zur Verdeutlichung des RAKE–Empfängers]]
 
[[Datei:P_ID1980__Mod_Z_5_5e.png|right|frame|Signale zur Verdeutlichung des RAKE–Empfängers]]
 +
:$$ r(t)  =  0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
 +
:$$ b(t)  =  \frac{6}{13} \cdot s(t) \hspace{-0.05cm} +  \hspace{-0.05cm} 1.00 \cdot s (t  \hspace{-0.05cm} -  \hspace{-0.05cm}1\,{\rm \mu s})  \hspace{-0.05cm}+  \hspace{-0.05cm}\frac{6}{13} \cdot s (t  \hspace{-0.05cm}- \hspace{-0.05cm} 2\,{\rm \mu s}) \hspace{0.05cm}.$$
 +
 
Richtig sind die <u>Aussagen 1 und 4</u>, wie die Grafik zeigt.  
 
Richtig sind die <u>Aussagen 1 und 4</u>, wie die Grafik zeigt.  
  
Bezüglich des AWGN–Rauschverhaltens sind $r(t)$ und $b(t)$ vergleichbar.
+
Bezüglich des AWGN–Rauschverhaltens sind&nbsp; $r(t)$&nbsp; und&nbsp; $b(t)$&nbsp; vergleichbar.
  
  

Aktuelle Version vom 20. August 2019, 14:51 Uhr

Zweiwegekanal & RAKE

Die Grafik zeigt einen Zweiwegekanal (gelbe Hinterlegung). Die entsprechende Beschreibungsgleichung lautet:

$$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$

Die Verzögerung auf dem Nebenpfad sei  $\tau = 1 \ \rm µ s$. Darunter gezeichnet ist die Struktur eines RAKE–Empfängers (grüne Hinterlegung) mit den allgemeinen Koeffizienten  $K, \ h_{0}, \ h_{1}, \ \tau_{0}$  und  $\tau_{1}$.

Der RAKE–Empfänger hat die Aufgabe, die Energie der beiden Signalpfade zu bündeln und dadurch die Entscheidung sicherer zu machen. Die gemeinsame Impulsantwort von Kanal und RAKE–Empfänger kann in der Form

$$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$

angegeben werden, allerdings nur dann, wenn die RAKE–Koeffizienten  $h_{0}, \ h_{1}, \ \tau_{0}$  und  $\tau_{1}$  geeignet gewählt werden. Der Hauptanteil von  $h_{\rm KR}(t)$  soll bei  $t = \tau$  liegen.

Die Konstante  $K$  ist aus Normierungsgründen notwendig. Um den Einfluss von AWGN–Rauschen nicht zu verfälschen, muss folgende Bedingung erfüllt sein:

$$K= \frac{1}{h_0^2 + h_1^2}.$$

Gesucht sind außer den geeigneten RAKE–Parametern auch die Signale  $r(t)$  und  $b(t)$, wenn  $s(t)$  ein Rechteck der Höhe  $1$  und der Breite  $T = 5 \ \rm µ s$  beschreibt.





Hinweise:



Fragebogen

1

Welche Aussagen gelten für die Kanalimpulsantwort  $h_{\rm K}(t)$ ?

$h_{\rm K}(t)$  besteht aus zwei Diracfunktionen.
$h_{\rm K}(t)$  ist komplexwertig.
$h_{\rm K}(t)$  ist eine mit der Verzögerungszeit  $\tau$  periodische Funktion.

2

Welche Aussagen gelten für den Kanalfrequenzgang  $H_{\rm K}(f)$ ?

Es gilt  $H_{\rm K}(f = 0) = 2$.
$H_{\rm K}(f)$  ist komplexwertig.
$|H_{\rm K}(f)|$  ist eine mit der Frequenz  $1/ \tau$  periodische Funktion.

3

Setzen Sie  $K = 1, \ h_{0} = 0.6$  und   $h_{1} = 0.4$. Bestimmen Sie die Verzögerungen  $\tau_{0}$  und  $\tau_{1}$, damit die  $h_{\rm KR}(t)$–Gleichung mit  $A_{0} = A_{2}$  erfüllt wird.

$\tau_{0} \ = \ $

$\ \rm µ s$
$\tau_{1} \ = \ $

$\ \rmµ s$

4

Welcher Wert ist für die Konstante  $K$  zu wählen?

$K \ = \ $

5

Welche Aussagen gelten für die Signale  $r(t)$  und  $b(t)$ ?

Der Maximalwert von  $r(t)$  ist  $1$.
Die Breite von  $r(t)$  ist  $7 \ \rm µ s$.
Der Maximalwert von  $b(t)$  ist  $1 \ \rm µ s$.
Die Breite von  $b(t)$  ist  $7 \ \rm µ s$.


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 1:

  • Die Impulsantwort  $h_{\rm K}(t)$  ergibt sich als das Empfangssignal  $r(t)$, wenn am Eingang ein Diracimpuls anliegt  $\Rightarrow s(t) = \delta(t)$.
  • Daraus folgt:
$$h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$


(2)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Der Kanalfrequenzgang  $H_{\rm K}(f)$  ist definitionsgemäß die Fouriertransformierte der Impulsantwort  $h_{\rm K}(t)$. Mit dem Verschiebungssatz ergibt sich hierfür:
$$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
  • Der erste Lösungsvorschlag ist dementsprechend falsch im Gegensatz zu den beiden anderen:
  • $H_{\rm K}(f)$  ist komplexwertig und der Betrag ist periodisch mit  $1/\tau$, wie die nachfolgende Rechnung zeigt:
$$|H_{\rm K}(f)|^2 = \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 = \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
$$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$
  • Für  $f = 0$  ist  $|H_{\rm K}(f)| = 1$. Im jeweiligen Frequenzabstand  $1/\tau$  wiederholt sich dieser Wert.


(3)  Wir setzen zunächst vereinbarungsgemäß  $K = 1$. Insgesamt kommt man über vier Wege von  $s(t)$  zum Ausgangssignal  $b(t)$.

  • Um die vorgegebene  $h_{\rm KR}(t)$–Gleichung zu erfüllen, muss entweder  $\tau_{0} = 0$  gelten oder  $\tau_{1}= 0$. Mit  $\tau_{0} = 0$  erhält man für die Impulsantwort:
$$ h_{\rm KR}(t) \ = \ 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) + 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
  • Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann  $\tau_{1} = \tau$  gewählt werden. Mit  $h_{0} = 0.6$  und  $h_{1} = 0.4$  erhält man dann  $A_{0} \neq A_{2}$:
$$h_{\rm KR}(t) = 0.36 \cdot \delta (t ) \hspace{-0.05cm}+\hspace{-0.05cm}0.48 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.16 \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
  • Dagegen ergibt sich mit  $h_{0} = 0.6$,  $h_{1} = 0.4,  \tau_{0} = \tau$  und  $\tau_{1} = 0$:
$$h_{\rm KR}(t)= 0.6 \cdot h_0 \cdot \delta (t - \tau ) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_0 \cdot \delta (t - 2\tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.6 \cdot h_1 \cdot \delta (t) \hspace{-0.05cm}+\hspace{-0.05cm} 0.4 \cdot h_1 \cdot \delta (t - \tau)= 0.52 \cdot \delta (t - \tau) \hspace{-0.05cm}+\hspace{-0.05cm} 0.24 \cdot \big[ \delta (t ) +\delta (t - 2\tau)\big] \hspace{0.05cm}.$$
  • Hier ist die Zusatzbedingung  $A_{0} = A_{2}$  erfüllt. Somit lautet das gesuchte Ergebnis:
$$\tau_0 = \tau \hspace{0.15cm}\underline {= 1\,{\rm µ s}} \hspace{0.05cm},\hspace{0.2cm}\tau_1 \hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$


(4)  Es gilt entsprechend der angegebenen Gleichung

$$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52}\hspace{0.15cm}\underline { \approx 1.923 } \hspace{0.05cm}.$$
  • Damit erhält man für die gemeinsame Impulsantwort  (es gilt  $0.24/0.52 = 6/13$):
$$h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$


(5)  Für das Empfangssignal  $r(t)$  und für das RAKE–Ausgangssignal  $b(t)$  gelten:

Signale zur Verdeutlichung des RAKE–Empfängers
$$ r(t) = 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
$$ b(t) = \frac{6}{13} \cdot s(t) \hspace{-0.05cm} + \hspace{-0.05cm} 1.00 \cdot s (t \hspace{-0.05cm} - \hspace{-0.05cm}1\,{\rm \mu s}) \hspace{-0.05cm}+ \hspace{-0.05cm}\frac{6}{13} \cdot s (t \hspace{-0.05cm}- \hspace{-0.05cm} 2\,{\rm \mu s}) \hspace{0.05cm}.$$

Richtig sind die Aussagen 1 und 4, wie die Grafik zeigt.

Bezüglich des AWGN–Rauschverhaltens sind  $r(t)$  und  $b(t)$  vergleichbar.