Aufgaben:Aufgabe 1.1: Musiksignale: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 2: Zeile 2:
  
 
[[File:P_ID339__Sig_A_1_1.png|right|frame|Musiksignale, Original sowie <br>verrauscht und/oder verzerrt?]]
 
[[File:P_ID339__Sig_A_1_1.png|right|frame|Musiksignale, Original sowie <br>verrauscht und/oder verzerrt?]]
Nebenstehend sehen Sie einen ca.&nbsp; $\text{30 ms}$&nbsp; langen Ausschnitt eines Musiksignals&nbsp; <math>q(t)</math>. Es handelt sich um das Stück &bdquo;Für Elise&rdquo; von Ludwig van Beethoven.
+
Nebenstehend sehen Sie einen ca.&nbsp; $\text{30 ms}$&nbsp; langen Ausschnitt eines Musiksignals&nbsp; <math>q(t)</math>.&nbsp; Es handelt sich um das Stück &bdquo;Für Elise&rdquo; von Ludwig van Beethoven.
  
 
*Darunter gezeichnet sind zwei Sinkensignale&nbsp; <math>v_1(t)</math>&nbsp; und&nbsp; <math>v_2(t)</math>, die nach der Übertragung des Musiksignals&nbsp; <math>q(t)</math>&nbsp; über zwei unterschiedliche Kanäle aufgezeichnet wurden.  
 
*Darunter gezeichnet sind zwei Sinkensignale&nbsp; <math>v_1(t)</math>&nbsp; und&nbsp; <math>v_2(t)</math>, die nach der Übertragung des Musiksignals&nbsp; <math>q(t)</math>&nbsp; über zwei unterschiedliche Kanäle aufgezeichnet wurden.  
Zeile 62: Zeile 62:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp;  Richtig ist der <u>Lösungsvorschlag 2</u>:
 
'''(1)'''&nbsp;  Richtig ist der <u>Lösungsvorschlag 2</u>:
*Im markierten Bereich von $20$ Millisekunden sind ca. $10$ Schwingungen zu erkennen.  
+
*Im markierten Bereich von&nbsp; $20$&nbsp; Millisekunden sind ca.&nbsp; $10$&nbsp; Schwingungen zu erkennen.  
*Daraus folgt für die Signalfrequenz näherungsweise das Ergebnis  $f = {10}/(20 \,\text{ms}) =  500 \,\text{Hz}$.
+
*Daraus folgt für die Signalfrequenz näherungsweise das Ergebnis&nbsp;   $f = {10}/(20 \,\text{ms}) =  500 \,\text{Hz}$.
 +
 
  
  
 
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
 
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 1</u>:
*Das Signal <math>v_1(t)</math> ist gegenüber dem Orginalsignal <math>q(t)</math> unverzerrt. Es gilt: &nbsp; $v_1(t)=\alpha \cdot q(t-\tau) .$
+
*Das Signal&nbsp; <math>v_1(t)</math>&nbsp; ist gegenüber dem Orginalsignal <math>q(t)</math> unverzerrt.&nbsp; Es gilt: &nbsp; $v_1(t)=\alpha \cdot q(t-\tau) .$
 +
 
 +
*Eine Dämpfung&nbsp; <math>\alpha</math>&nbsp; und eine Laufzeit&nbsp; <math>\tau</math>&nbsp; führen nicht zu Verzerrungen, sondern das Signal ist dann nur leiser und es kommt später als das Original.
  
*Eine Dämpfung <math>\alpha</math> und eine Laufzeit <math>\tau</math> führen nämlich nicht zu Verzerrungen, sondern das Signal ist dann nur leiser und es kommt später als das Original.
 
  
  
 
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
 
'''(3)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
*Man erkennt sowohl im dargestellten Signalverlauf <math>v_2(t)</math> als auch im Audiosignal ''additives Rauschen''  &nbsp; ⇒ &nbsp;  <u>Lösungsvorschlag 3</u>.  
+
*Man erkennt sowohl im dargestellten Signalverlauf&nbsp; <math>v_2(t)</math>&nbsp; als auch im Audiosignal&nbsp; ''additives Rauschen''  &nbsp; ⇒ &nbsp;  <u>Lösungsvorschlag 3</u>.  
*Der Signalrauschabstand beträgt dabei ca. $\text{30 dB}$; dies ist aber aus dieser Darstellung nicht erkennbar.  
+
*Der Signalrauschabstand beträgt dabei ca.&nbsp; $\text{30 dB}$;&nbsp; dies ist aber aus dieser Darstellung nicht erkennbar.  
*Richtig ist aber auch der <u>Lösungsvorschlag 1</u>: &nbsp; Ohne diesen Rauschanteil wäre <math>v_2(t)</math> identisch mit <math>q(t)</math>.
+
*Richtig ist aber auch der <u>Lösungsvorschlag 1</u>: &nbsp; Ohne diesen Rauschanteil wäre&nbsp; <math>v_2(t)</math>&nbsp; identisch mit&nbsp; <math>q(t)</math>.
  
  
'''(4)'''&nbsp;  Das Signal <math>v_1(t)</math> ist formgleich mit dem Originalsignal <math>q(t)</math> und unterscheidet sich von diesem lediglich  
+
'''(4)'''&nbsp;  Das Signal&nbsp; <math>v_1(t)</math>&nbsp; ist formgleich mit dem Originalsignal&nbsp; <math>q(t)</math>&nbsp; und unterscheidet sich von diesem lediglich durch
*durch den Amplitudenfaktor $\alpha = \underline{\text{0.3}}$  (dies entspricht etwa $\text{–10 dB)}$  
+
*den Amplitudenfaktor&nbsp; $\alpha = \underline{\text{0.3}}$&nbsp;   (dies entspricht etwa&nbsp; $\text{–10 dB)}$  
*und die Laufzeit  $\tau = \underline{10\,\text{ms}}$.
+
*und die Laufzeit&nbsp; $\tau = \underline{10\,\text{ms}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
 
__NOEDITSECTION__
 
__NOEDITSECTION__
 
[[Category:Aufgaben zu Signaldarstellung|^1. Grundbegriffe der Nachrichtentechnik^]]
 
[[Category:Aufgaben zu Signaldarstellung|^1. Grundbegriffe der Nachrichtentechnik^]]

Aktuelle Version vom 8. April 2021, 09:15 Uhr

Musiksignale, Original sowie
verrauscht und/oder verzerrt?

Nebenstehend sehen Sie einen ca.  $\text{30 ms}$  langen Ausschnitt eines Musiksignals  \(q(t)\).  Es handelt sich um das Stück „Für Elise” von Ludwig van Beethoven.

  • Darunter gezeichnet sind zwei Sinkensignale  \(v_1(t)\)  und  \(v_2(t)\), die nach der Übertragung des Musiksignals  \(q(t)\)  über zwei unterschiedliche Kanäle aufgezeichnet wurden.
  • Mit Hilfe der nachfolgenden Bedienelemente können Sie sich die jeweils ersten vierzehn Sekunden der drei Audiosignale  \(q(t)\),  \(v_1(t)\)  und  \(v_2(t)\) anhören.


Originalsignal  \(q(t)\)

Sinkensignal  \(v_1(t)\)

Sinkensignal  \(v_2(t)\)



Hinweis:



Fragebogen

1

Schätzen Sie die Signalfrequenz von  \(q(t)\)  im dargestellen Ausschnitt ab.

Die Signalfrequenz beträgt etwa  \(f = 250\,\text{Hz}\).
Die Signalfrequenz beträgt etwa  \(f = 500\,\text{Hz}\).
Die Signalfrequenz beträgt etwa  \(f = 1\,\text{kHz}\).

2

Welche Aussagen sind für das Signal  \(v_1(t)\)  zutreffend?

Das Signal  \(v_1(t)\)  ist gegenüber \(q(t)\) unverzerrt.
Das Signal  \(v_1(t)\)  weist gegenüber  \(q(t)\)  Verzerrungen auf.
Das Signal  \(v_1(t)\)  ist gegenüber  \(q(t)\)  verrauscht.

3

Welche Aussagen sind für das Signal  \(v_2(t)\)  zutreffend?

Das Signal  \(v_2(t)\)  ist gegenüber  \(q(t)\)  unverzerrt.
Das Signal  \(v_2(t)\)  weist gegenüber  \(q(t)\)  Verzerrungen auf.
Das Signal  \(v_2(t)\)  ist gegenüber  \(q(t)\)  verrauscht.

4

Eines der Signale ist gegenüber dem Orginal  \(q(t)\)  unverzerrt und nicht verrauscht.
Schätzen Sie hierfür den Dämpfungsfaktor und die Laufzeit ab.

\( \alpha \ = \ \)

\( \tau \ = \ \)

$\ \text{ms}$


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 2:

  • Im markierten Bereich von  $20$  Millisekunden sind ca.  $10$  Schwingungen zu erkennen.
  • Daraus folgt für die Signalfrequenz näherungsweise das Ergebnis  $f = {10}/(20 \,\text{ms}) = 500 \,\text{Hz}$.


(2)  Richtig ist der Lösungsvorschlag 1:

  • Das Signal  \(v_1(t)\)  ist gegenüber dem Orginalsignal \(q(t)\) unverzerrt.  Es gilt:   $v_1(t)=\alpha \cdot q(t-\tau) .$
  • Eine Dämpfung  \(\alpha\)  und eine Laufzeit  \(\tau\)  führen nicht zu Verzerrungen, sondern das Signal ist dann nur leiser und es kommt später als das Original.


(3)  Richtig sind die Lösungsvorschläge 1 und 3:

  • Man erkennt sowohl im dargestellten Signalverlauf  \(v_2(t)\)  als auch im Audiosignal  additives Rauschen   ⇒   Lösungsvorschlag 3.
  • Der Signalrauschabstand beträgt dabei ca.  $\text{30 dB}$;  dies ist aber aus dieser Darstellung nicht erkennbar.
  • Richtig ist aber auch der Lösungsvorschlag 1:   Ohne diesen Rauschanteil wäre  \(v_2(t)\)  identisch mit  \(q(t)\).


(4)  Das Signal  \(v_1(t)\)  ist formgleich mit dem Originalsignal  \(q(t)\)  und unterscheidet sich von diesem lediglich durch

  • den Amplitudenfaktor  $\alpha = \underline{\text{0.3}}$  (dies entspricht etwa  $\text{–10 dB)}$
  • und die Laufzeit  $\tau = \underline{10\,\text{ms}}$.