Aufgaben:Aufgabe 3.6Z: Komplexe Exponentialfunktion: Unterschied zwischen den Versionen
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID518__Sig_Z_3_6_neu.png|right|frame|Darstellung im Spektralbereich: <br>komplexe Exponentialfunktion und geeignete Aufspaltung]] | [[Datei:P_ID518__Sig_Z_3_6_neu.png|right|frame|Darstellung im Spektralbereich: <br>komplexe Exponentialfunktion und geeignete Aufspaltung]] | ||
− | In Zusammenhang mit den [[Signaldarstellung/Unterschiede_und_Gemeinsamkeiten_von_TP-_und_BP-Signalen|Bandpass-Systemen]] wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion ${X(f)}$, die ein komplexes Zeitsignal ${x(t)}$ zur Folge hat. | + | In Zusammenhang mit den [[Signaldarstellung/Unterschiede_und_Gemeinsamkeiten_von_TP-_und_BP-Signalen|Bandpass-Systemen]] wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion ${X(f)}$, die ein komplexes Zeitsignal ${x(t)}$ zur Folge hat. |
In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet. | In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet. | ||
Zeile 27: | Zeile 27: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie lautet die zu $G(f)$ passende Zeitfunktion $g(t)$? Wie groß ist $g(t = 1 \, µ \text {s})$? | + | {Wie lautet die zu $G(f)$ passende Zeitfunktion $g(t)$? Wie groß ist $g(t = 1 \, µ \text {s})$? |
|type="{}"} | |type="{}"} | ||
$\text{Re}\big[g(t = 1 \, µ \text {s})\big] \ = \ $ { 0.707 3% } $\text{V}$ | $\text{Re}\big[g(t = 1 \, µ \text {s})\big] \ = \ $ { 0.707 3% } $\text{V}$ | ||
Zeile 33: | Zeile 33: | ||
− | {Wie lautet die zu $U(f)$ passende Zeitfunktion $u(t)$? Wie groß ist $u(t = 1 \, µ \text {s})$? | + | {Wie lautet die zu $U(f)$ passende Zeitfunktion $u(t)$? Wie groß ist $u(t = 1 \, µ \text {s})$? |
|type="{}"} | |type="{}"} | ||
$\text{Re}\big[u(t = 1 \, µ \text {s})\big]\ = \ $ { 0. } $\text{V}$ | $\text{Re}\big[u(t = 1 \, µ \text {s})\big]\ = \ $ { 0. } $\text{V}$ | ||
Zeile 52: | Zeile 52: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' $G(f)$ ist die Spektralfunktion eines Cosinussignals mit der Periodendauer $T_0 = 1/f_0 = 8 \, µ\text {s}$: | + | '''(1)''' $G(f)$ ist die Spektralfunktion eines Cosinussignals mit der Periodendauer $T_0 = 1/f_0 = 8 \, µ\text {s}$: |
:$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$ | :$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | Bei $t = 1 \, µ\text {s}$ ist der Signalwert gleich $A \cdot \cos(\pi /4)$: | + | Bei $t = 1 \, µ\text {s}$ ist der Signalwert gleich $A \cdot \cos(\pi /4)$: |
− | *Der Realteil ist $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$, | + | *Der Realteil ist $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$, |
− | *der Imaginärteil ist $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$ | + | *der Imaginärteil ist $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$ |
Zeile 63: | Zeile 63: | ||
:$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$ | :$$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$ | ||
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich): | erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich): | ||
− | :$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} - {\rm{e}}^{{\rm{ - j}}2{\rm{\pi }}f_0 t} } \right).$$ | + | :$$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$ |
− | Nach dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] kann hierfür auch geschrieben werden: | + | *Nach dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] kann hierfür auch geschrieben werden: |
:$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$ | :$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | *Der <u>Realteil dieses Signals ist stets Null</u>. | + | :*Der <u>Realteil dieses Signals ist stets Null</u>. |
− | *Bei $t = 1 \, µ\text {s}$ gilt für den Imaginärteil: $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$. | + | :*Bei $t = 1 \, µ\text {s}$ gilt für den Imaginärteil: $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$. |
− | '''(3)''' Wegen $X(f) = G(f) + U(f)$ gilt auch: | + | '''(3)''' Wegen $X(f) = G(f) + U(f)$ gilt auch: |
:$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$ | :$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$ | ||
− | Dieses Ergebnis kann mit dem | + | Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden: |
− | :$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} .$$ | + | :$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$ |
Richtig sind die vorgegebenen <u>Alternativen 1 und 3</u>: | Richtig sind die vorgegebenen <u>Alternativen 1 und 3</u>: | ||
*Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn. | *Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn. | ||
− | *Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \, µ\text {s}$. | + | *Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \, µ\text {s}$. |
{{ML-Fuß}} | {{ML-Fuß}} | ||
Aktuelle Version vom 27. April 2021, 14:56 Uhr
In Zusammenhang mit den Bandpass-Systemen wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion ${X(f)}$, die ein komplexes Zeitsignal ${x(t)}$ zur Folge hat.
In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Gesetzmäßigkeiten der Fouriertransformation.
- Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo Gesetzmäßigkeiten der Fouriertransformation an Beispielen verdeutlicht.
- Lösen Sie diese Aufgabe mit Hilfe des Zuordnungssatzes und des Verschiebungssatzes.
- Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$
Fragebogen
Musterlösung
- $$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$
Bei $t = 1 \, µ\text {s}$ ist der Signalwert gleich $A \cdot \cos(\pi /4)$:
- Der Realteil ist $\text{Re}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$,
- der Imaginärteil ist $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.}$
(2) Ausgehend von der Fourierkorrespondenz
- $$A \cdot {\rm \delta} ( f )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ A$$
erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):
- $$U( f ) = {A}/{2} \cdot \delta ( {f - f_0 } ) - {A}/{2} \cdot \delta ( {f + f_0 } )\ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, \ \ u( t ) = {A}/{2} \cdot \left( {{\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0\hspace{0.05cm}\cdot \hspace{0.05cm} t} - {\rm{e}}^{{\rm{ - j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} } \right).$$
- Nach dem Satz von Euler kann hierfür auch geschrieben werden:
- $$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$
- Der Realteil dieses Signals ist stets Null.
- Bei $t = 1 \, µ\text {s}$ gilt für den Imaginärteil: $\text{Im}[g(t = 1 \, µ \text {s})] = \;\underline{0.707\, \text{V}}$.
(3) Wegen $X(f) = G(f) + U(f)$ gilt auch:
- $$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$
Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:
- $$x(t) = A \cdot {\rm{e}}^{{\rm{j}}\hspace{0.05cm}\cdot \hspace{0.05cm}2{\rm{\pi }}\hspace{0.05cm}\cdot \hspace{0.05cm}f_0 \hspace{0.05cm}\cdot \hspace{0.05cm}t} .$$
Richtig sind die vorgegebenen Alternativen 1 und 3:
- Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn.
- Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \, µ\text {s}$.