Aufgaben:Aufgabe 1.4Z: Alles rechteckförmig: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt)
Zeile 5: Zeile 5:
 
Wir betrachten das periodische Rechtecksignal  $x(t)$  gemäß obiger Skizze, dessen Periodendauer  $T_0 = 2T$  ist.  
 
Wir betrachten das periodische Rechtecksignal  $x(t)$  gemäß obiger Skizze, dessen Periodendauer  $T_0 = 2T$  ist.  
  
Dieses Signal besitzt Spektralanteile bei der Grundfrequenz  $f_0 = 1/T_0 = 1/(2T)$  und allen ungeradzahligen Vielfachen davon, d.h. bei  $3f_0$,  $5f_0,$  usw. Zusätzlich gibt es einen Gleichanteil.  
+
*Dieses Signal besitzt Spektralanteile bei der Grundfrequenz  $f_0 = 1/T_0 = 1/(2T)$  und allen ungeradzahligen Vielfachen davon, das heißt bei  $3f_0$,  $5f_0,$  usw. Zusätzlich gibt es einen Gleichanteil.  
  
 
*Dazu betrachten wir zwei Filter  $\rm A$  und  $\rm B$  mit jeweils rechteckförmiger Impulsantwort  $h_{\rm A}(t)$  mit der Dauer  $6T$  bzw.  $h_{\rm B}(t)$  mit der Dauer  $5T$.  
 
*Dazu betrachten wir zwei Filter  $\rm A$  und  $\rm B$  mit jeweils rechteckförmiger Impulsantwort  $h_{\rm A}(t)$  mit der Dauer  $6T$  bzw.  $h_{\rm B}(t)$  mit der Dauer  $5T$.  
Zeile 18: Zeile 18:
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel  [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich|Systembeschreibung im Zeitbereich]]  
 
*Die Aufgabe gehört zum  Kapitel  [[Lineare_zeitinvariante_Systeme/Systembeschreibung_im_Zeitbereich|Systembeschreibung im Zeitbereich]]  
* Informationen zur Faltung finden Sie im Kapitel   [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]]  des Buches „Signaldarstellung”.
+
* Informationen zur Faltung finden Sie im Kapitel   [[Signaldarstellung/Faltungssatz_und_Faltungsoperation|Faltungssatz und Faltungsoperation]]  im Buch „Signaldarstellung”.
*Wir verweisen auch auf das interaktive Applet  [[Applets:Zur_Verdeutlichung_der_grafischen_Faltung|Zur Verdeutlichung der graphischen Faltung]].
+
*Wir verweisen Sie auch auf das interaktive Applet  [[Applets:Zur_Verdeutlichung_der_grafischen_Faltung|Zur Verdeutlichung der graphischen Faltung]].
 
   
 
   
 
   
 
   
Zeile 27: Zeile 27:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Ausgangssignal $y_{\rm A}(t)$ von Filter $\rm A$, insbesondere die Werte bei $t = 0$ und $t = T$.  
+
{Berechnen Sie das Ausgangssignal&nbsp; $y_{\rm A}(t)$&nbsp; von Filter&nbsp; $\rm A$, insbesondere die Werte bei&nbsp; $t = 0$&nbsp; und&nbsp; $t = T$.  
 
|type="{}"}
 
|type="{}"}
 
$y_{\rm A}(t = 0) \ =\ $ { 1 3% } &nbsp;$\rm V$
 
$y_{\rm A}(t = 0) \ =\ $ { 1 3% } &nbsp;$\rm V$
Zeile 33: Zeile 33:
  
  
{Geben Sie die Betragsfunktion $|H_{\rm A}(f)|$ an. Welcher Wert ergibt sich bei der Frequenz $f = f_0$? <br>Interpretieren Sie das Ergebnis der Teilaufgabe '''(1)'''.
+
{Geben Sie die Betragsfunktion&nbsp; $|H_{\rm A}(f)|$&nbsp; an. &nbsp; Welcher Wert ergibt sich bei der Frequenz&nbsp; $f = f_0$? <br>Interpretieren Sie das Ergebnis der Teilaufgabe&nbsp; '''(1)'''.
 
|type="{}"}
 
|type="{}"}
 
$|H_{\rm A}(f = f_0)| \ =\ $ { 0. }
 
$|H_{\rm A}(f = f_0)| \ =\ $ { 0. }
  
  
{Berechnen Sie das Ausgangssignal $y_{\rm B}(t)$ von Filter $\rm B$, insbesondere die Werte bei $t = 0$ und $t = T$.  
+
{Berechnen Sie das Ausgangssignal&nbsp; $y_{\rm B}(t)$&nbsp; von Filter&nbsp; $\rm B$, insbesondere die Werte bei&nbsp; $t = 0$&nbsp; und&nbsp; $t = T$.  
 
|type="{}"}
 
|type="{}"}
 
$y_{\rm B}(t = 0) \ =\ $ { 0.8 3% } &nbsp;$\rm V$
 
$y_{\rm B}(t = 0) \ =\ $ { 0.8 3% } &nbsp;$\rm V$
Zeile 44: Zeile 44:
  
  
{Wie lautet die Betragsfunktion $|H_{\rm B}(f)|$, insbesondere bei den Frequenzen $f = f_0$ und $f = 3 · f_0$? <br>Interpretieren Sie damit das Ergebnis von Teilaufgabe '''(3)'''.  
+
{Wie lautet die Betragsfunktion&nbsp; $|H_{\rm B}(f)|$, insbesondere bei den Frequenzen&nbsp; $f = f_0$&nbsp; und&nbsp; $f = 3 · f_0$? <br>Interpretieren Sie damit das Ergebnis der Teilaufgabe&nbsp; '''(3)'''.  
 
|type="{}"}
 
|type="{}"}
 
$|H_{\rm B}(f = f_0)| \ =\ $ { 0.127 5%  }
 
$|H_{\rm B}(f = f_0)| \ =\ $ { 0.127 5%  }
Zeile 53: Zeile 53:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Ausgangssignal ist das Ergebnis der Faltungsoperation zwischen $x(t)$ und $h_{\rm A}(t)$:
+
'''(1)'''&nbsp; Das Ausgangssignal ist das Ergebnis der Faltungsoperation zwischen&nbsp; $x(t)$&nbsp; und&nbsp; $h_{\rm A}(t)$:
 
:$$y_{\rm A}(t) = x (t) * h_{\rm A} (t) = \int_{ - \infty }^{ + \infty } {x ( \tau  )}  \cdot h_{\rm A} ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
:$$y_{\rm A}(t) = x (t) * h_{\rm A} (t) = \int_{ - \infty }^{ + \infty } {x ( \tau  )}  \cdot h_{\rm A} ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
*Aufgrund der Rechteckfunktion und der Dauer $6T$ kann hierfür auch geschrieben werden:  
+
*Aufgrund der Rechteckfunktion und der Dauer&nbsp; $6T$&nbsp; kann hierfür auch geschrieben werden:  
 
:$$y_{\rm A}(t) = \frac{1}{6T}\cdot \int_{t-6T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
 
:$$y_{\rm A}(t) = \frac{1}{6T}\cdot \int_{t-6T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
*Man erkennt, dass diese Gleichung für alle $t$ das gleiche Ergebnis $y_{\rm A}(t) \rm \underline{\: = 1V}$ liefert.  
+
*Man erkennt, dass diese Gleichung für alle&nbsp; $t$&nbsp; das gleiche Ergebnis&nbsp; $y_{\rm A}(t) \rm \underline{\: = 1V}$&nbsp; liefert.  
  
  
'''(2)'''&nbsp; Der Betragsfrequenzgang lautet $|H_{\rm A}(f)| = |{\rm si}(\pi \cdot f \cdot 6T)|.$ Dieser weist Nullstellen im Abstand $1/(6T)$ auf.  
+
 
*Somit liegen auch bei $f_0$, $3f_0$, $5f_0$ usw. jeweils Nullstellen vor.  
+
'''(2)'''&nbsp; Der Betragsfrequenzgang lautet&nbsp; $|H_{\rm A}(f)| = |{\rm si}(\pi \cdot f \cdot 6T)|.$ &nbsp; Dieser weist Nullstellen im Abstand&nbsp; $1/(6T)$&nbsp; auf.  
*Insbesondere gilt auch $|H_{\rm A}(f = f_0)| \underline{\: = 0}$.  
+
*Somit liegen auch bei&nbsp; $f_0$,&nbsp; $3f_0$,&nbsp; $5f_0$&nbsp; usw. jeweils Nullstellen vor.  
*Vom Spektrum $X(f)$ bleibt somit nur der Gleichanteil $1 \hspace{0.05cm} \rm V$ unverändert erhalten.  
+
*Insbesondere gilt auch&nbsp; $|H_{\rm A}(f = f_0)| \underline{\: = 0}$.  
*Dagegen sind alle anderen Spektrallinien in $Y_{\rm A}(f)$ nicht mehr enthalten.  
+
*Vom Spektrum&nbsp; $X(f)$&nbsp; bleibt somit nur der Gleichanteil&nbsp; $1 \hspace{0.05cm} \rm V$&nbsp; unverändert erhalten.  
 +
*Dagegen sind alle anderen Spektrallinien in&nbsp; $Y_{\rm A}(f)$&nbsp; nicht mehr enthalten.  
  
  
 
  [[Datei:P_ID836__LZI_Z_1_4_c.png | Grafische Verdeutlichung der Faltungsoperation| rechts|frame]]  
 
  [[Datei:P_ID836__LZI_Z_1_4_c.png | Grafische Verdeutlichung der Faltungsoperation| rechts|frame]]  
'''(3)'''&nbsp; Analog zur Teilaufgabe '''(1)''' kann man hier für das Ausgangssignal schreiben:
+
'''(3)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(1)'''&nbsp; kann man hier für das Ausgangssignal schreiben:
 
:$$y_{\rm B}(t) = \frac{1}{5T}\cdot \int_{t-5T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
 
:$$y_{\rm B}(t) = \frac{1}{5T}\cdot \int_{t-5T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
Es ergibt sich nun ein um den Mittelwert $1 \ \rm V$ schwankender dreieckförmiger Verlauf, wie aus der unteren Grafik zu ersehen ist.  
+
*Es ergibt sich ein um den Mittelwert&nbsp; $1 \ \rm V$&nbsp; schwankender dreieckförmiger Verlauf &nbsp; &rArr; &nbsp; siehe untere Grafik.  
*Da jeweils zwei Rechtecke und drei Lücken ins Integrationsintervall fallen, gilt zu den Zeiten $t = 0, t = 2T, t = 4T$, ...:
+
*Da jeweils zwei Rechtecke und drei Lücken ins Integrationsintervall fallen, gilt für&nbsp; $t = 0,&nbsp; t = 2T,$&nbsp; usw.:
 
:$$y_{\rm B}(t) = \frac{2\,{\rm V} \cdot 2T }{5T}  \hspace{0.15cm}\underline{= 0.8\,{\rm V} =y_{\rm B}(t=0) }.$$
 
:$$y_{\rm B}(t) = \frac{2\,{\rm V} \cdot 2T }{5T}  \hspace{0.15cm}\underline{= 0.8\,{\rm V} =y_{\rm B}(t=0) }.$$
*Dagegen sind bei $t = T, 3T, 5T,$ usw. jeweils drei Rechtecke und zwei Lücken zu berücksichtigen, und man erhält:  
+
*Bei&nbsp; $t = T,\ 3T, \ 5T, $&nbsp; usw. sind jeweils drei Rechtecke und zwei Lücken zu berücksichtigen: Man erhält:  
 
:$$y_{\rm B}(t)  \underline{\: = 1.2 \: {\rm V}=y_{\rm B}(t=T)}.$$
 
:$$y_{\rm B}(t)  \underline{\: = 1.2 \: {\rm V}=y_{\rm B}(t=T)}.$$
  
  
'''(4)'''&nbsp; Die Betragsfunktion lautet nun allgemein bzw. bei den Frequenzen $f = f_0 = 1/(2T)$ und $f = 3f_0$:
+
 
 +
'''(4)'''&nbsp; Die Betragsfunktion lautet nun allgemein bzw. bei den Frequenzen&nbsp; $f = f_0 = 1/(2T)$&nbsp; und&nbsp; $f = 3f_0$:
 
:$$\begin{align*} |H_{\rm B}(f)| & = |{\rm si}(\pi \cdot f \cdot 5T)|, \\ |H_{\rm B}(f = f_0)| & = |{\rm si}(\pi \frac{5T}{2T})| = |{\rm si}(2.5\pi )| = \frac{1}{2.5 \pi}  \hspace{0.15cm}\underline{= 0.127}, \\ |H_{\rm B}(f = 3f_0)| & =  |{\rm si}(7.5\pi )| = \frac{1}{7.5 \pi}  \hspace{0.15cm}\underline{=0.042}.\end{align*}$$  
 
:$$\begin{align*} |H_{\rm B}(f)| & = |{\rm si}(\pi \cdot f \cdot 5T)|, \\ |H_{\rm B}(f = f_0)| & = |{\rm si}(\pi \frac{5T}{2T})| = |{\rm si}(2.5\pi )| = \frac{1}{2.5 \pi}  \hspace{0.15cm}\underline{= 0.127}, \\ |H_{\rm B}(f = 3f_0)| & =  |{\rm si}(7.5\pi )| = \frac{1}{7.5 \pi}  \hspace{0.15cm}\underline{=0.042}.\end{align*}$$  
  
 
Interpretation:
 
Interpretation:
*Die Spektralanteile des Rechtecksignals bei $f_0, 3f_0,$ usw. werden zwar nun nicht mehr unterdrückt, aber mit steigender Frequenz immer mehr abgeschwächt und zwar in der Form, dass der Rechteckverlauf in ein periodisches Dreiecksignal gewandelt wird. Der Gleichanteil $(1 \hspace{0.05cm} \rm V)$ bleibt auch hier unverändert.  
+
*Die Spektralanteile des Rechtecksignals bei&nbsp; $f_0,&nbsp; 3f_0,$&nbsp; usw. werden zwar nun nicht mehr unterdrückt, aber mit steigender Frequenz immer mehr abgeschwächt und zwar in der Form, dass der Rechteckverlauf in ein periodisches Dreiecksignal gewandelt wird. &nbsp; Der Gleichanteil&nbsp; $(1 \hspace{0.05cm} \rm V)$&nbsp; bleibt auch hier unverändert.  
*Beide Filter liefern also den Mittelwert des Eingangssignals. Beim vorliegenden Signal $x(t)$ ist für die Bestimmung des Mittelwertes das Filter $\rm A$ besser geeignet als das Filter $\rm B$, da bei Ersterem die Länge der Impulsantwort ein Vielfaches der Periodendauer $T_0 = 2T$ ist.  
+
*Beide Filter liefern also den Mittelwert des Eingangssignals. &nbsp; Beim vorliegenden Signal&nbsp; $x(t)$&nbsp; ist für die Bestimmung des Mittelwertes das Filter&nbsp; $\rm A$&nbsp; besser geeignet als das Filter&nbsp; $\rm B$, da bei Ersterem die Länge der Impulsantwort ein Vielfaches der Periodendauer&nbsp; $T_0 = 2T$&nbsp; ist.  
*Ist diese Bedingung – wie beim Filter $\rm B$ – nicht erfüllt, so überlagert sich dem Mittelwert noch ein (in diesem Beispiel dreieckförmiges) Fehlersignal.  
+
*Ist diese Bedingung – wie beim Filter&nbsp; $\rm B$ – nicht erfüllt, so überlagert sich dem Mittelwert noch ein (in diesem Beispiel dreieckförmiges) Fehlersignal.  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 18. Oktober 2019, 13:58 Uhr

Periodisches Rechtecksignal und
Filter mit rechteckförmiger Impulsantwort

Wir betrachten das periodische Rechtecksignal  $x(t)$  gemäß obiger Skizze, dessen Periodendauer  $T_0 = 2T$  ist.

  • Dieses Signal besitzt Spektralanteile bei der Grundfrequenz  $f_0 = 1/T_0 = 1/(2T)$  und allen ungeradzahligen Vielfachen davon, das heißt bei  $3f_0$,  $5f_0,$  usw. Zusätzlich gibt es einen Gleichanteil.
  • Dazu betrachten wir zwei Filter  $\rm A$  und  $\rm B$  mit jeweils rechteckförmiger Impulsantwort  $h_{\rm A}(t)$  mit der Dauer  $6T$  bzw.  $h_{\rm B}(t)$  mit der Dauer  $5T$.
  • Die Höhen der beiden Impulsantworten sind so gewählt, dass die Flächen der Rechtecke jeweils  $1$  ergeben.




Hinweise:



Fragebogen

1

Berechnen Sie das Ausgangssignal  $y_{\rm A}(t)$  von Filter  $\rm A$, insbesondere die Werte bei  $t = 0$  und  $t = T$.

$y_{\rm A}(t = 0) \ =\ $

 $\rm V$
$y_{\rm A}(t = T) \ =\ $

 $\rm V$

2

Geben Sie die Betragsfunktion  $|H_{\rm A}(f)|$  an.   Welcher Wert ergibt sich bei der Frequenz  $f = f_0$?
Interpretieren Sie das Ergebnis der Teilaufgabe  (1).

$|H_{\rm A}(f = f_0)| \ =\ $

3

Berechnen Sie das Ausgangssignal  $y_{\rm B}(t)$  von Filter  $\rm B$, insbesondere die Werte bei  $t = 0$  und  $t = T$.

$y_{\rm B}(t = 0) \ =\ $

 $\rm V$
$y_{\rm B}(t = T) \ =\ $

 $\rm V$

4

Wie lautet die Betragsfunktion  $|H_{\rm B}(f)|$, insbesondere bei den Frequenzen  $f = f_0$  und  $f = 3 · f_0$?
Interpretieren Sie damit das Ergebnis der Teilaufgabe  (3).

$|H_{\rm B}(f = f_0)| \ =\ $

$|H_{\rm B}(f = 3f_0)| \ =\ $


Musterlösung

(1)  Das Ausgangssignal ist das Ergebnis der Faltungsoperation zwischen  $x(t)$  und  $h_{\rm A}(t)$:

$$y_{\rm A}(t) = x (t) * h_{\rm A} (t) = \int_{ - \infty }^{ + \infty } {x ( \tau )} \cdot h_{\rm A} ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  • Aufgrund der Rechteckfunktion und der Dauer  $6T$  kann hierfür auch geschrieben werden:
$$y_{\rm A}(t) = \frac{1}{6T}\cdot \int_{t-6T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
  • Man erkennt, dass diese Gleichung für alle  $t$  das gleiche Ergebnis  $y_{\rm A}(t) \rm \underline{\: = 1V}$  liefert.


(2)  Der Betragsfrequenzgang lautet  $|H_{\rm A}(f)| = |{\rm si}(\pi \cdot f \cdot 6T)|.$   Dieser weist Nullstellen im Abstand  $1/(6T)$  auf.

  • Somit liegen auch bei  $f_0$,  $3f_0$,  $5f_0$  usw. jeweils Nullstellen vor.
  • Insbesondere gilt auch  $|H_{\rm A}(f = f_0)| \underline{\: = 0}$.
  • Vom Spektrum  $X(f)$  bleibt somit nur der Gleichanteil  $1 \hspace{0.05cm} \rm V$  unverändert erhalten.
  • Dagegen sind alle anderen Spektrallinien in  $Y_{\rm A}(f)$  nicht mehr enthalten.


Grafische Verdeutlichung der Faltungsoperation

(3)  Analog zur Teilaufgabe  (1)  kann man hier für das Ausgangssignal schreiben:

$$y_{\rm B}(t) = \frac{1}{5T}\cdot \int_{t-5T}^{t}x(\tau)\hspace{0.15cm} {\rm d}\tau.$$
  • Es ergibt sich ein um den Mittelwert  $1 \ \rm V$  schwankender dreieckförmiger Verlauf   ⇒   siehe untere Grafik.
  • Da jeweils zwei Rechtecke und drei Lücken ins Integrationsintervall fallen, gilt für  $t = 0,  t = 2T,$  usw.:
$$y_{\rm B}(t) = \frac{2\,{\rm V} \cdot 2T }{5T} \hspace{0.15cm}\underline{= 0.8\,{\rm V} =y_{\rm B}(t=0) }.$$
  • Bei  $t = T,\ 3T, \ 5T, $  usw. sind jeweils drei Rechtecke und zwei Lücken zu berücksichtigen: Man erhält:
$$y_{\rm B}(t) \underline{\: = 1.2 \: {\rm V}=y_{\rm B}(t=T)}.$$


(4)  Die Betragsfunktion lautet nun allgemein bzw. bei den Frequenzen  $f = f_0 = 1/(2T)$  und  $f = 3f_0$:

$$\begin{align*} |H_{\rm B}(f)| & = |{\rm si}(\pi \cdot f \cdot 5T)|, \\ |H_{\rm B}(f = f_0)| & = |{\rm si}(\pi \frac{5T}{2T})| = |{\rm si}(2.5\pi )| = \frac{1}{2.5 \pi} \hspace{0.15cm}\underline{= 0.127}, \\ |H_{\rm B}(f = 3f_0)| & = |{\rm si}(7.5\pi )| = \frac{1}{7.5 \pi} \hspace{0.15cm}\underline{=0.042}.\end{align*}$$

Interpretation:

  • Die Spektralanteile des Rechtecksignals bei  $f_0,  3f_0,$  usw. werden zwar nun nicht mehr unterdrückt, aber mit steigender Frequenz immer mehr abgeschwächt und zwar in der Form, dass der Rechteckverlauf in ein periodisches Dreiecksignal gewandelt wird.   Der Gleichanteil  $(1 \hspace{0.05cm} \rm V)$  bleibt auch hier unverändert.
  • Beide Filter liefern also den Mittelwert des Eingangssignals.   Beim vorliegenden Signal  $x(t)$  ist für die Bestimmung des Mittelwertes das Filter  $\rm A$  besser geeignet als das Filter  $\rm B$, da bei Ersterem die Länge der Impulsantwort ein Vielfaches der Periodendauer  $T_0 = 2T$  ist.
  • Ist diese Bedingung – wie beim Filter  $\rm B$ – nicht erfüllt, so überlagert sich dem Mittelwert noch ein (in diesem Beispiel dreieckförmiges) Fehlersignal.