Aufgaben:Aufgabe 4.10: Binär und quaternär: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID384__Sto_A_4_10.png|right|300px|frame|Binärsignal  $b(t)$  und Quaternärsignal  $q(t)$]]
 
[[Datei:P_ID384__Sto_A_4_10.png|right|300px|frame|Binärsignal  $b(t)$  und Quaternärsignal  $q(t)$]]
Wir betrachten hier ein Binärsignal  $b(t)$   und ein Quarternärsignal  $q(t)$, wobei gilt:
+
Wir betrachten hier ein Binärsignal  $b(t)$   und ein Quarternärsignal  $q(t)$,  wobei gilt:
*Die beiden Signale sind rechteckförmig, und die Dauer der einzelnen Rechtecke beträgt jeweils  $T$  (Symboldauer).
+
*Die beiden Signale sind rechteckförmig,  und die Dauer der einzelnen Rechtecke beträgt jeweils  $T$  (Symboldauer).
 
*Die durch die Impulshöhen der einzelnen Rechteckimpulse dargestellten Symbole  $($mit Stufenzahl  $M = 2$  bzw.  $M = 4)$  sind statistisch unabhängig.
 
*Die durch die Impulshöhen der einzelnen Rechteckimpulse dargestellten Symbole  $($mit Stufenzahl  $M = 2$  bzw.  $M = 4)$  sind statistisch unabhängig.
*Wegen der bipolaren Signalkonstellation  sind beide Signale  gleichsignalfrei, wenn die Symbolwahrscheinlichkeiten geeignet (symmetrisch) gewählt werden.
+
*Wegen der bipolaren Signalkonstellation  sind beide Signale  gleichsignalfrei,  wenn die Symbolwahrscheinlichkeiten geeignet  (symmetrisch)  gewählt werden.
 
*Aufgrund der letztgenannten Eigenschaft folgt für die Wahrscheinlichkeiten der Binärsymbole:
 
*Aufgrund der letztgenannten Eigenschaft folgt für die Wahrscheinlichkeiten der Binärsymbole:
 
:$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
 
:$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
Zeile 18: Zeile 18:
  
  
''Hinweis:''  
+
'''Hinweis:'''  Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
 
   
 
   
  
Zeile 32: Zeile 31:
  
  
{Wie groß ist der AKF–Wert bei  $\tau = T$ ? Begründen Sie, warum die AKF–Werte für  $|\tau| > T$  genauso groß sind.  Skizzieren Sie den AKF–Verlauf.
+
{Wie groß ist der AKF–Wert bei  $\tau = T$ ?  Begründen Sie,  warum die AKF–Werte für  $|\tau| > T$  genauso groß sind.  Skizzieren Sie den AKF–Verlauf.
 
|type="{}"}
 
|type="{}"}
 
$\varphi_q(\tau = T) \ =  \ $ { 0. } $\ \rm V^2$
 
$\varphi_q(\tau = T) \ =  \ $ { 0. } $\ \rm V^2$
Zeile 58: Zeile 57:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Der AKF-Wert an der Stelle $\tau = 0$ entspricht der mittleren Signalleistung, also dem quadratischen Mittelwert von $q(t)$. Für diesen gilt:
+
'''(1)'''  Der AKF-Wert an der Stelle  $\tau = 0$  entspricht der mittleren Signalleistung,  also dem quadratischen Mittelwert von  $q(t)$.  Für diesen gilt:
 
[[Datei:P_ID385__Sto_A_4_10_b_neu.png|right|frame|Dreieckförmige AKF]]
 
[[Datei:P_ID385__Sto_A_4_10_b_neu.png|right|frame|Dreieckförmige AKF]]
 
:$$\varphi_q(\tau = 0)=  {1}/{6 } \cdot  ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$
 
:$$\varphi_q(\tau = 0)=  {1}/{6 } \cdot  ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$
  
  
'''(2)'''  Die einzelnen Symbole wurden als statistisch unabhängig vorausgesetzt. Deshalb und wegen des fehlenden Gleichanteils gilt hier für jeden ganzzahligen Wert von $\nu$:
+
'''(2)'''  Die einzelnen Symbole wurden als statistisch unabhängig vorausgesetzt.  
 +
*Deshalb und wegen des fehlenden Gleichanteils gilt hier für jeden ganzzahligen Wert von  $\nu$:
  
 
:$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E}  \big [ q(t) \big ] \cdot {\rm E} \big [  q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
 
:$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E}  \big [ q(t) \big ] \cdot {\rm E} \big [  q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
  
 
*Somit hat die gesuchte AKF den rechts skizzierten Verlauf.  
 
*Somit hat die gesuchte AKF den rechts skizzierten Verlauf.  
*Im Bereich $-T \le \tau \le +T$ ist die AKF aufgrund der rechteckförmigen Impulsform abschnittsweise linear, also dreieckförmig.
+
*Im Bereich  $-T \le \tau \le +T$  ist die AKF aufgrund der rechteckförmigen Impulsform abschnittsweise linear,  also dreieckförmig.
<br clear=all>
+
 
'''(3)'''&nbsp; Die AKF $\varphi_b(\tau)$ des Bin&auml;rsignals ist aufgrund der statistisch unabh&auml;ngigen Symbole im Bereich $| \tau| > T$ ebenfalls identisch $0$, und für $-T \le \tau \le +T$ ergibt sich ebenfalls eine Dreiecksform. F&uuml;r den quadratischen Mittelwert erh&auml;lt man:
+
 
 +
 
 +
'''(3)'''&nbsp; Die&nbsp; AKF $\varphi_b(\tau)$&nbsp; des Bin&auml;rsignals ist aufgrund der statistisch unabh&auml;ngigen Symbole im Bereich&nbsp; $| \tau| > T$&nbsp; ebenfalls identisch Null, und für&nbsp; $-T \le \tau \le +T$&nbsp; ergibt sich ebenfalls eine Dreiecksform.  
 +
*F&uuml;r den quadratischen Mittelwert erh&auml;lt man:
 
:$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
 
:$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
  
Mit $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$ sind die beiden Autokorrelationsfunktionen $\varphi_q(\tau)$  und $\varphi_b(\tau)$  identisch.
+
*Mit&nbsp; $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$&nbsp; sind die beiden Autokorrelationsfunktionen&nbsp; $\varphi_q(\tau)$&nbsp; und&nbsp; $\varphi_b(\tau)$  identisch.
 +
 
 +
 
  
 +
'''(4)'''&nbsp; Richtig sind  <u>die Lösungsvorschläge 1, 3 und 4</u>.
  
'''(4)'''&nbsp; Richtig sind  <u>die Lösungsvorschläge 1, 3 und 4</u>. Aus der Autokorrelationsfunktion lassen sich tatsächlich ermitteln:
+
Aus der Autokorrelationsfunktion lassen sich tatsächlich ermitteln:
*die Periodendauer $T_0$: &nbsp; diese ist f&uuml;r die Mustersignale und die AKF gleich;
+
*die Periodendauer&nbsp; $T_0$: &nbsp; diese ist f&uuml;r die Mustersignale und die AKF gleich;
* der lineare Mittelwert: &nbsp;Wurzel aus dem Endwert der AKF f&uuml;r $\tau \to \infty$; und
+
* der lineare Mittelwert: &nbsp; Wurzel aus dem Endwert der AKF f&uuml;r&nbsp; $\tau \to \infty$&nbsp; und
* die Varianz: &nbsp;Differenz der AKF-Werte von $\tau = 0$ und $\tau \to \infty$.  
+
* die Varianz: &nbsp;Differenz der AKF-Werte von&nbsp; $\tau = 0$&nbsp; und&nbsp; $\tau \to \infty$.  
  
  
 
Nicht ermittelt werden k&ouml;nnen:
 
Nicht ermittelt werden k&ouml;nnen:
* die Wahrscheinlichkeitsdichtefunktion: &nbsp;trotz $\varphi_q(\tau) =\varphi_b(\tau)$ ist $f_q(q) \ne f_b(b)$;
+
* die Wahrscheinlichkeitsdichtefunktion: &nbsp;trotz&nbsp; $\varphi_q(\tau) =\varphi_b(\tau)$&nbsp; ist&nbsp; $f_q(q) \ne f_b(b)$;
* die Momente h&ouml;herer Ordnung: &nbsp;f&uuml;r deren Berechnung ben&ouml;tigt man die WDF; sowie
+
* die Momente h&ouml;herer Ordnung: &nbsp;f&uuml;r deren Berechnung ben&ouml;tigt man die WDF;  
* alle Phasenbeziehungen und Symmetrieeigenschaften.
+
* alle Phasenbeziehungen und Symmetrieeigenschaften sind aus der AKF nicht erkennbar.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 20. März 2022, 18:30 Uhr

Binärsignal  $b(t)$  und Quaternärsignal  $q(t)$

Wir betrachten hier ein Binärsignal  $b(t)$  und ein Quarternärsignal  $q(t)$,  wobei gilt:

  • Die beiden Signale sind rechteckförmig,  und die Dauer der einzelnen Rechtecke beträgt jeweils  $T$  (Symboldauer).
  • Die durch die Impulshöhen der einzelnen Rechteckimpulse dargestellten Symbole  $($mit Stufenzahl  $M = 2$  bzw.  $M = 4)$  sind statistisch unabhängig.
  • Wegen der bipolaren Signalkonstellation sind beide Signale gleichsignalfrei,  wenn die Symbolwahrscheinlichkeiten geeignet  (symmetrisch)  gewählt werden.
  • Aufgrund der letztgenannten Eigenschaft folgt für die Wahrscheinlichkeiten der Binärsymbole:
$${\rm Pr}\big[b(t) = +b_0\big] = {\rm Pr}\big[b(t) = -b_0\big] ={1}/{2}.$$
  • Dagegen gelte für das Quarternärsignal:
$${\rm Pr}\big[q(t) = +3 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -3 \hspace{0.05cm}{\rm V}\big]= {1}/{6},$$
$${\rm Pr}\big[q(t) = +1 \hspace{0.05cm}{\rm V}\big] = {\rm Pr}\big[q(t) = -1 \hspace{0.05cm}{\rm V}\big]= {2}/{6}.$$



Hinweis:  Die Aufgabe gehört zum Kapitel  Autokorrelationsfunktion.



Fragebogen

1

Berechnen Sie den AKF–Wert  $\varphi_q(\tau = 0)$  des Quarternärsignals.

$\varphi_q(\tau = 0) \ = \ $

$\ \rm V^2$

2

Wie groß ist der AKF–Wert bei  $\tau = T$ ?  Begründen Sie,  warum die AKF–Werte für  $|\tau| > T$  genauso groß sind.  Skizzieren Sie den AKF–Verlauf.

$\varphi_q(\tau = T) \ = \ $

$\ \rm V^2$

3

Mit welchen Amplitudenwerten  $(\pm b_0)$  hat das Binärsignal  $b(t)$  genau die gleiche AKF?

$b_0\ = \ $

$\ \rm V$

4

Welche der folgenden Beschreibungsgrößen eines stochastischen Prozesses lassen sich aus der AKF ermitteln?

Periodendauer.
Wahrscheinlichkeitsdichtefunktion.
Linearer Mittelwert.
Varianz.
Moment 3. Ordnung.
Phasenbeziehungen.


Musterlösung

(1)  Der AKF-Wert an der Stelle  $\tau = 0$  entspricht der mittleren Signalleistung,  also dem quadratischen Mittelwert von  $q(t)$.  Für diesen gilt:

Dreieckförmige AKF
$$\varphi_q(\tau = 0)= {1}/{6 } \cdot ({\rm 3\,V})^2 + {2}/{6 } \cdot ({\rm 1\,V})^2 + {2}/{6 } \cdot (-{\rm 1\,V})^2 + {1}/{6 } \cdot (-{\rm 3\,V})^2= \rm {22}/{6 }\, \rm V^2\hspace{0.15cm}\underline{= \rm 3.667 \,V^2}.$$


(2)  Die einzelnen Symbole wurden als statistisch unabhängig vorausgesetzt.

  • Deshalb und wegen des fehlenden Gleichanteils gilt hier für jeden ganzzahligen Wert von  $\nu$:
$${\rm E} \big [ q(t) \cdot q ( t + \nu T) \big ] = {\rm E} \big [ q(t) \big ] \cdot {\rm E} \big [ q ( t + \nu T) \big ]\hspace{0.15cm}\underline{ = 0}.$$
  • Somit hat die gesuchte AKF den rechts skizzierten Verlauf.
  • Im Bereich  $-T \le \tau \le +T$  ist die AKF aufgrund der rechteckförmigen Impulsform abschnittsweise linear,  also dreieckförmig.


(3)  Die  AKF $\varphi_b(\tau)$  des Binärsignals ist aufgrund der statistisch unabhängigen Symbole im Bereich  $| \tau| > T$  ebenfalls identisch Null, und für  $-T \le \tau \le +T$  ergibt sich ebenfalls eine Dreiecksform.

  • Für den quadratischen Mittelwert erhält man:
$$\varphi_b (\tau = 0) = b_{\rm 0}^{\rm 2}.$$
  • Mit  $b_0\hspace{0.15cm}\underline{= 1.915\, \rm V}$  sind die beiden Autokorrelationsfunktionen  $\varphi_q(\tau)$  und  $\varphi_b(\tau)$ identisch.


(4)  Richtig sind die Lösungsvorschläge 1, 3 und 4.

Aus der Autokorrelationsfunktion lassen sich tatsächlich ermitteln:

  • die Periodendauer  $T_0$:   diese ist für die Mustersignale und die AKF gleich;
  • der lineare Mittelwert:   Wurzel aus dem Endwert der AKF für  $\tau \to \infty$  und
  • die Varianz:  Differenz der AKF-Werte von  $\tau = 0$  und  $\tau \to \infty$.


Nicht ermittelt werden können:

  • die Wahrscheinlichkeitsdichtefunktion:  trotz  $\varphi_q(\tau) =\varphi_b(\tau)$  ist  $f_q(q) \ne f_b(b)$;
  • die Momente höherer Ordnung:  für deren Berechnung benötigt man die WDF;
  • alle Phasenbeziehungen und Symmetrieeigenschaften sind aus der AKF nicht erkennbar.