Aufgaben:Aufgabe 4.10Z: Korrelationsdauer: Unterschied zwischen den Versionen
(Eine dazwischenliegende Version desselben Benutzers wird nicht angezeigt) | |||
Zeile 26: | Zeile 26: | ||
− | + | '''Hinweise:''' | |
− | |||
− | |||
− | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]]. | ||
*Bezug genommen wird insbesondere auf die Seite [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Interpretation_der_Autokorrelationsfunktion|Interpretation der Autokorrelationsfunktion]]. | *Bezug genommen wird insbesondere auf die Seite [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Interpretation_der_Autokorrelationsfunktion|Interpretation der Autokorrelationsfunktion]]. | ||
Zeile 51: | Zeile 48: | ||
− | {Wie groß ist die Korrelationsdauer $T_{\rm K}$, also derjenige Zeitpunkt, bei dem die AKF auf die Hälfte des Maximums abgefallen ist? | + | {Wie groß ist die Korrelationsdauer $T_{\rm K}$, also derjenige Zeitpunkt, bei dem die AKF auf die Hälfte des Maximums abgefallen ist? |
|type="{}"} | |type="{}"} | ||
$T_{\rm K} \ = \ $ { 2.35 3% } $\ \rm µ s$ | $T_{\rm K} \ = \ $ { 2.35 3% } $\ \rm µ s$ | ||
Zeile 71: | Zeile 68: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''(1)''' | + | '''(1)''' Das zweite Moment ergibt sich zu $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2.$ |
*Daraus folgt der Effektivwert $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$. | *Daraus folgt der Effektivwert $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$. | ||
Zeile 94: | Zeile 91: | ||
− | '''(4)''' | + | '''(4)''' Die Leistungen $P_x = P_y$ sind gleich, und zwar jeweils $0.25\hspace{0.05 cm}\rm V^2$. |
*Unter Berücksichtigung des Mittelwertes $m_y = -0.3 \hspace{0.05 cm}\rm V$ gilt: | *Unter Berücksichtigung des Mittelwertes $m_y = -0.3 \hspace{0.05 cm}\rm V$ gilt: | ||
:$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$ | :$$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$ |
Aktuelle Version vom 21. März 2022, 16:25 Uhr
Das nebenstehende Bild zeigt Mustersignale zweier Zufallsprozesse $\{x_i(t)\}$ und $\{y_i(t)\}$ mit jeweils gleicher Leistung $P_x = P_y = 5\hspace{0.05 cm} \rm mW$. Vorausgesetzt ist hierbei der Widerstand $R = 50\hspace{0.05 cm}\rm \Omega$.
Der Zufallsprozess $\{x_i(t)\}$
- ist mittelwertfrei $(m_x = 0)$,
- besitzt die gaußförmige AKF $\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$ und
- weist die äquivalente AKF-Dauer $\nabla \tau_x = 5\hspace{0.05 cm}\rm µ s $ auf.
Wie aus dem unteren Bild zu erkennen ist, hat der Zufallsprozess $\{y_i(t)\}$ sehr viel stärkere innere statistische Bindungen als der Zufallsprozess $\{x_i(t)\}$.
Oder anders ausgedrückt:
- Der Zufallsprozess $\{y_i(t)\}$ ist niederfrequenter als $\{x_i(t)\}$.
- Die äquivalente AKF-Dauer ist $\nabla \tau_y = 10 \hspace{0.05 cm}\rm µ s $.
Aus der Skizze ist auch zu erkennen, dass $\{y_i(t)\}$ im Gegensatz zu $\{x_i(t)\}$ nicht gleichsignalfrei ist. Der Gleichsignalanteil beträgt vielmehr $m_y = -0.3 \hspace{0.05 cm}\rm V$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Autokorrelationsfunktion.
- Bezug genommen wird insbesondere auf die Seite Interpretation der Autokorrelationsfunktion.
Fragebogen
Musterlösung
- Daraus folgt der Effektivwert $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.
(2) Wegen $P_x = \varphi_x (\tau = 0)$ gilt für die AKF allgemein:
- $$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
- Daraus erhält man:
- $$\varphi_x (\tau = {\rm 2\hspace{0.1cm} µ s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
- $$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm µ s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$
(3) Hier gilt folgende Bestimmungsgleichung:
- $${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$
- Daraus folgt $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm µ s}}$.
- Bei anderer AKF-Form erhält man ein anderes Verhältnis für $T_{\rm K} / {\rm \nabla} \tau_x$.
(4) Die Leistungen $P_x = P_y$ sind gleich, und zwar jeweils $0.25\hspace{0.05 cm}\rm V^2$.
- Unter Berücksichtigung des Mittelwertes $m_y = -0.3 \hspace{0.05 cm}\rm V$ gilt:
- $$m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$$
- Daraus folgt:
- $$\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}.$$
(5) Bezogen auf den Einheitswiderstand $ R = 1 \hspace{0.05 cm}{\rm \Omega}$ lautet die AKF des Prozesses $\{y_i(t)\}$:
- $$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
- Rechts sehen Sie den Funktionsverlauf. Bezogen auf den Widerstand $ R = 50 \hspace{0.05 cm}{\rm \Omega}$ ergeben sich die nachfolgend angegebenen AKF-Werte:
- $$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
- Daraus folgt:
- $$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm µ s}) \hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$
- Bei positivem Mittelwert $m_y$ (mit gleichem Betrag) würde sich an der AKF nichts ändern, da $m_y$ in die AKF-Gleichung quadratisch eingeht.