Aufgaben:Aufgabe 3.11: Auslöschungskanal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 9: Zeile 9:
  
  
Die Grafik zeigt das Modell für den Sonderfall  $M = 4$.  Das Sinkensymbol  $y = \text{E}$  berücksichtigt eine  ''Auslöschung''  (englisch:  ''Erasure'' )  für den Fall, dass der Empfänger keine hinreichend gesicherte Entscheidung treffen kann.
+
Die Grafik zeigt das Modell für den Sonderfall  $M = 4$.  Das Sinkensymbol  $y = \text{E}$  berücksichtigt eine  „Auslöschung”  (englisch:  "Erasure")  für den Fall, dass der Empfänger keine hinreichend gesicherte Entscheidung treffen kann.
  
 
Die Übergangswahrscheinlichkeiten sind für  $1 ≤ μ ≤ M$  wie folgt gegeben:
 
Die Übergangswahrscheinlichkeiten sind für  $1 ≤ μ ≤ M$  wie folgt gegeben:
Zeile 15: Zeile 15:
 
:$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = \lambda \hspace{0.05cm}.$$
 
:$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = \lambda \hspace{0.05cm}.$$
 
Gesucht werden:
 
Gesucht werden:
* die Kapazität  $C_{M\rm –EC}$  dieses ''M–ary Erasure Channels'',
+
* die Kapazität  $C_{M\rm –EC}$  dieses  "M–ary Erasure Channels",
* die Kapazität  $C_{\rm BEC}$  des  [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channels]]  als Sonderfall des obigen Modells.
+
* die Kapazität  $C_{\rm BEC}$  des  [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channels]]  $\rm (BEC)$  als Sonderfall des obigen Modells.
  
  
Zeile 29: Zeile 29:
 
*Bezug genommen wird insbesondere auf die Seite     [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Informationstheoretisches_Modell_der_Digitalsignal.C3.BCbertragung|Informationstheoretisches Modell der Digitalsignalübertragung]].
 
*Bezug genommen wird insbesondere auf die Seite     [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Informationstheoretisches_Modell_der_Digitalsignal.C3.BCbertragung|Informationstheoretisches Modell der Digitalsignalübertragung]].
 
*Im obigen Schaubild sind Auslöschungen  $($mit Wahrscheinlichkeit  $λ)$  blau gezeichnet.
 
*Im obigen Schaubild sind Auslöschungen  $($mit Wahrscheinlichkeit  $λ)$  blau gezeichnet.
* „Richtige Übertragungswege”  $($also von  $X = μ$  nach  $Y = μ)$  sind rot  dargestellt  ($1 ≤ μ ≤ M$).
+
* „Richtige Übertragungswege”  $($also von  $X = μ$  nach  $Y = μ)$  sind rot  dargestellt  $(1 ≤ μ ≤ M)$.
 
   
 
   
  
Zeile 124: Zeile 124:
  
  
'''(6)'''   Der  ''Binary Erasure Channel''  $\rm (BEC)$  ist ein Sonderfall des hier betrachteten allgemeinen Modells mit  $M = 2$:
+
'''(6)'''   Der  "Binary Erasure Channel"  $\rm (BEC)$  ist ein Sonderfall des hier betrachteten allgemeinen Modells mit  $M = 2$:
 
:$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}.$$
 
:$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}.$$
 
*Richtig ist somit der <u>Lösungsvorschlag 1</u>.  
 
*Richtig ist somit der <u>Lösungsvorschlag 1</u>.  
*Der zweite Lösungsvorschlag gilt dagegen für den&nbsp; ''Binary Symmetric Channel''&nbsp; $\rm (BSC)$&nbsp; mit der Verfälschungswahrscheinlichkeit&nbsp; $λ$.
+
*Der zweite Lösungsvorschlag gilt dagegen für den&nbsp; "Binary Symmetric Channel"&nbsp; $\rm (BSC)$&nbsp; mit der Verfälschungswahrscheinlichkeit&nbsp; $λ$.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 22. September 2021, 12:31 Uhr

Auslöschungskanal mit vier Eingängen und fünf Ausgängen

Betrachtet wird ein Auslöschungskanal mit

  • den  $M$  Eingängen  $x ∈ X = \{1,\ 2, \ \text{...} \ ,\ M\}$,  und
  • den  $M + 1$  Ausgängen  $y ∈ Y = \{1,\ 2,\ \ \text{...} \ ,\ M,\ \text{E}\}.$


Die Grafik zeigt das Modell für den Sonderfall  $M = 4$.  Das Sinkensymbol  $y = \text{E}$  berücksichtigt eine  „Auslöschung”  (englisch:  "Erasure")  für den Fall, dass der Empfänger keine hinreichend gesicherte Entscheidung treffen kann.

Die Übergangswahrscheinlichkeiten sind für  $1 ≤ μ ≤ M$  wie folgt gegeben:

$${\rm Pr}(Y \hspace{-0.05cm} = \mu\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = 1-\lambda \hspace{0.05cm},$$
$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= \mu) = \lambda \hspace{0.05cm}.$$

Gesucht werden:

  • die Kapazität  $C_{M\rm –EC}$  dieses  "M–ary Erasure Channels",
  • die Kapazität  $C_{\rm BEC}$  des  Binary Erasure Channels  $\rm (BEC)$  als Sonderfall des obigen Modells.





Hinweise:



Fragebogen

1

Welches  $P_X(X)$  ist zur Kanalkapazitätsberechnung allgemein anzusetzen?

$P_X(X) = (0.5, \ 0.5),$
$P_X(X) = (1/M,\ 1/M, \ \text{...} \ ,\ 1/M),$
$P_X(X) = (0.1,\ 0.2,\ 0.3,\ 0.4).$

2

Wie viele Wahrscheinlichkeiten  $p_{μκ} = {\rm Pr}\big[(X = μ) ∩ (Y = κ)\big]$  sind ungleich Null?

Genau  $M · (M + 1)$,
Genau  $M$,
Genau  $2 · M$.

3

Wie groß ist die Sinkenentropie allgemein und für  $M = 4$  und  $λ = 0.2$?

$H(Y) \ = \ $

$\ \rm bit$

4

Berechnen Sie die Irrelevanz.  Welcher Wert ergibt sich für  $M = 4$  und  $λ = 0.2$?

$H(Y|X) \ = \ $

$\ \rm bit$

5

Wie groß ist die Kanalkapazität  $C$  in Abhängigkeit von  $M$?

$M = 4\text{:} \hspace{0.5cm} C\ = \ $

$\ \rm bit$
$M = 2\text{:} \hspace{0.5cm} C\ = \ $

$\ \rm bit$

6

Wie lautet die Kanalkapazität des BEC–Kanals in kompakter Form?

$C_{\rm BEC} = 1 - λ,$
$C_{\rm BEC} = 1 - H_{\rm bin}(λ).$


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 2:

  • Aufgrund der Symmetrie der Übergangswahrscheinlichkeiten  $P_{Y|X}(Y|X)$  ist offensichtlich, dass eine Gleichverteilung zur maximalen Transinformation  $I(X; Y)$  und damit zur Kanalkapazität  $C$  führen wird:
$$ P_X(X) = P_X\big ( \hspace{0.03cm}X\hspace{-0.03cm}=1\hspace{0.03cm}, \hspace{0.08cm} X\hspace{-0.03cm}=2\hspace{0.03cm},\hspace{0.08cm}\text{...}\hspace{0.08cm}, X\hspace{-0.03cm}=M\hspace{0.03cm}\big ) = \big [\hspace{0.03cm}1/M\hspace{0.03cm}, \hspace{0.08cm} 1/M\hspace{0.03cm},\hspace{0.03cm}\text{...}\hspace{0.08cm},\hspace{0.08cm} 1/M\hspace{0.03cm}\big ]\hspace{0.05cm}.$$
  • Im Sonderfall  $M = 2$  wäre auch  $P_X(X) = (0.5, \ 0.5)$  richtig.


(2)  Zutreffend ist der Lösungsvorschlag 3, also genau  $2M$  Verbindungen.  Da:

  • Von jedem Quellensymbol  $X = μ$  kommt man sowohl zum Sinkensymbol  $Y = μ$  als auch zum Erasure  $Y = \text{E}$.


(3)  Alle Wahrscheinlichkeiten  ${\rm Pr}(Y = 1), \hspace{0.05cm} \text{...}\hspace{0.05cm} , \hspace{0.08cm}{\rm Pr}(Y = M)$  sind gleich groß.  Damit erhält man für  $μ = 1, \hspace{0.05cm} \text{...} \hspace{0.05cm} , \hspace{0.08cm} M$:

$${\rm Pr}(Y \hspace{-0.05cm} = \mu) = ( 1-\lambda)/M \hspace{0.05cm}.$$
  • Außerdem kommt man von jedem Quellensymbol  $X = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm} , X = M$  auch zum Erasure  $Y = \text{E}$:
$${\rm Pr}(Y \hspace{-0.05cm} = {\rm E}) = \lambda \hspace{0.05cm}.$$
  • Die Kontrolle ergibt, dass die Summe aller  $M + 1$  Sinkensymbolwahrscheinlichkeiten tatsächlich  $1$  ergibt. 
  • Daraus folgt für die Sinkenentropie:
$$H(Y) = M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{M}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{\lambda} \hspace{0.05cm}.$$
  • Zusammengefasst ergibt dies mit der binären Entropiefunktion:
$$H(Y) = (1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm}+\hspace{0.15cm} H_{\rm bin} (\lambda ) \hspace{0.05cm}$$
und mit  $M = 4$   sowie  $ λ = 0.2$:
$$H(Y) = 1.6 \,{\rm bit} + H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=2.322\,{\rm bit}} \hspace{0.05cm}.$$


(4)  Die  $2M$  Verbundwahrscheinlichkeiten

$${\rm Pr} \big[(X = μ) ∩ (Y = κ)\big] ≠ 0$$
und die bedingten Wahrscheinlichkeiten
$$pκ|μ = {\rm Pr}(Y = κ|X = μ)$$
zeigen folgende Eigenschaften:
  1.   Die Kombination  $p_{μκ} = (1 – λ)/M$  und  $p_{κ|μ} = 1 – λ$  kommt  $M$  mal vor.
  2.   Die Kombination  $p_{μκ} = λ/M$  und  $p_{κ|μ} = λ$  kommt ebenfalls $M$ mal vor.


Daraus folgt:

$$ H(Y \hspace{-0.15cm}\mid \hspace{-0.15cm} X) \hspace{-0.01cm} =\hspace{-0.01cm} M \cdot \frac{ 1-\lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm}M \cdot \frac{ \lambda }{M} \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1 - \lambda} \hspace{0.15cm}+\hspace{0.15cm} \lambda \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ \lambda} = H_{\rm bin} (\lambda)\hspace{0.05cm}.$$
  • Das Ergebnis ist unabhängig von  $M$.  Mit  $λ = 0.2$  erhält man:
$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H_{\rm bin} (0.2 ) \hspace{0.15cm} \underline {=0.722\,{\rm bit}} \hspace{0.05cm}.$$


(5)  Die Kanalkapazität  $C$  ist gleich der maximalen Transinformation  $I(X; Y)$,  wobei die Maximierung hinsichtlich  $P_X(X)$  bereits durch den symmetrischen Ansatz berücksichtigt wurde:

$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M + H_{\rm bin} (\lambda) - H_{\rm bin} (\lambda) = ( 1-\lambda) \cdot {\rm log}_2 \hspace{0.1cm} M \hspace{0.05cm}$$
$$\Rightarrow \hspace{0.3cm} M = 4\text{:} \hspace{0.3cm} \underline {C=1.6\,\,{\rm bit}} \hspace{0.05cm}, \hspace{0.8cm} M = 2\text{:} \hspace{0.3cm} \underline {C=0.8\,\,{\rm bit}} \hspace{0.05cm}.$$


(6)  Der  "Binary Erasure Channel"  $\rm (BEC)$  ist ein Sonderfall des hier betrachteten allgemeinen Modells mit  $M = 2$:

$$C_{\rm BEC} = 1-\lambda \hspace{0.05cm}.$$
  • Richtig ist somit der Lösungsvorschlag 1.
  • Der zweite Lösungsvorschlag gilt dagegen für den  "Binary Symmetric Channel"  $\rm (BSC)$  mit der Verfälschungswahrscheinlichkeit  $λ$.