Aufgaben:Aufgabe 4.5Z: Nochmals Transinformation: Unterschied zwischen den Versionen
Zeile 107: | Zeile 107: | ||
− | '''(3)''' Die Transinformation kann auch in der Form $I(X;Y) = h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X | + | '''(3)''' Die Transinformation kann auch in der Form $I(X;Y) = h(Y)-h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) $ geschrieben werden: |
:$$h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = h(Y) - I(X;Y) = 1 \,{\rm nat} - 0.5 \,{\rm nat} \hspace{0.15cm}\underline{= 0.5\,{\rm nat}= 0.721\,{\rm bit}}\hspace{0.05cm}.$$ | :$$h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = h(Y) - I(X;Y) = 1 \,{\rm nat} - 0.5 \,{\rm nat} \hspace{0.15cm}\underline{= 0.5\,{\rm nat}= 0.721\,{\rm bit}}\hspace{0.05cm}.$$ | ||
Aktuelle Version vom 2. Oktober 2021, 12:44 Uhr
Die Grafik zeigt oben die in dieser Aufgabe zu betrachtende Verbund–WDF $f_{XY}(x, y)$, die identisch ist mit der „grünen” Konstellation in der Aufgabe 4.5.
- $f_{XY}(x, y)$ ist in der $y$–Richtung um den Faktor $3$ vergrößert.
- Im grün hinterlegten Definitionsgebiet ist die Verbund–WDF konstant gleich $C = 1/F$, wobei $F$ die Fläche des Parallelogramms angibt.
In der Aufgabe 4.5 wurden folgende differentielle Entropien berechnet:
- $$h(X) \ = \ {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A\hspace{0.05cm})\hspace{0.05cm},$$
- $$h(Y) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}B \cdot \sqrt{ {\rm e } } \hspace{0.05cm})\hspace{0.05cm},$$
- $$h(XY) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}F \hspace{0.05cm}) = {\rm log} \hspace{0.1cm} (\hspace{0.05cm}A \cdot B \hspace{0.05cm})\hspace{0.05cm}.$$
In dieser Aufgabe sind nun die Parameterwerte $A = {\rm e}^{-2}$ und $B = {\rm e}^{0.5}$ zu verwenden.
Entsprechend dem obigen Schaubild sollen nun auch die bedingten differentiellen Entropien $h(Y|X)$ und $h(X|Y)$ ermittelt und deren Bezug zur Transinformation $I(X; Y)$ angegeben werden.
Hinweise:
- Die Aufgabe gehört zum Kapitel AWGN–Kanalkapazität bei wertkontinuierlichem Eingang.
- Sollen die Ergebnisse in „nat” angegeben werden, so erreicht man dies mit „log” ⇒ „ln”.
- Sollen die Ergebnisse in „bit” angegeben werden, so erreicht man dies mit „log” ⇒ „log2”.
Fragebogen
Musterlösung
- Die Zufallsgröße $X$ ist gleichverteilt zwischen $0$ und $1/{\rm e}^2={\rm e}^{-2}$:
- $$h(X) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{\rm e}^{-2}\hspace{0.05cm}) \hspace{0.15cm}\underline{= -2\,{\rm nat}}\hspace{0.05cm}. $$
- Die Zufallsgröße $Y$ ist dreieckverteilt zwischen $±{\rm e}^{-0.5}$:
- $$h(Y) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}\sqrt{ {\rm e} } \cdot \sqrt{ {\rm e} } ) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{ { \rm e } } \hspace{0.05cm}) \hspace{0.15cm}\underline{= +1\,{\rm nat}}\hspace{0.05cm}.$$
- Die Fläche des Parallelogramms ergibt sich zu
- $$F = A \cdot B = {\rm e}^{-2} \cdot {\rm e}^{0.5} = {\rm e}^{-1.5}\hspace{0.05cm}.$$
- Damit hat die 2D–WDF im grün hinterlegten Bereich die konstante Höhe $C = 1/F ={\rm e}^{1.5}$ und man erhält für die Verbundentropie:
- $$h(XY) = {\rm ln} \hspace{0.1cm} (F) = {\rm ln} \hspace{0.1cm} (\hspace{0.05cm}{\rm e}^{-1.5}\hspace{0.05cm}) \hspace{0.15cm}\underline{= -1.5\,{\rm nat}}\hspace{0.05cm}.$$
- Daraus ergibt sich für die Transinformation:
- $$I(X;Y) = h(X) + h(Y) - h(XY) = -2 \,{\rm nat} + 1 \,{\rm nat} - (-1.5 \,{\rm nat} ) \hspace{0.15cm}\underline{= 0.5\,{\rm nat}}\hspace{0.05cm}.$$
(2) Allgemein gilt der Zusammenhang $\log_2(x) = \ln(x)/\ln(2)$. Damit erhält man mit den Ergebnissen der Teilaufgabe (1):
- $$h(X) \ = \ \frac{-2\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= -2.886\,{\rm bit}}\hspace{0.05cm},$$
- $$h(Y) \ = \ \frac{+1\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= +1.443\,{\rm bit}}\hspace{0.05cm},$$
- $$h(XY) \ = \ \frac{-1.5\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= -2.164\,{\rm bit}}\hspace{0.05cm},$$
- $$I(X;Y) \ = \ \frac{0.5\,{\rm nat}}{0.693\,{\rm nat/bit}}\hspace{0.35cm}\underline{= 0.721\,{\rm bit}}\hspace{0.05cm}.$$
- Oder auch:
- $$I(X;Y) = -2.886 \,{\rm bit} + 1.443 \,{\rm bit}+ 2.164 \,{\rm bit}{= 0.721\,{\rm bit}}\hspace{0.05cm}.$$
(3) Die Transinformation kann auch in der Form $I(X;Y) = h(Y)-h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) $ geschrieben werden:
- $$h(Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X) = h(Y) - I(X;Y) = 1 \,{\rm nat} - 0.5 \,{\rm nat} \hspace{0.15cm}\underline{= 0.5\,{\rm nat}= 0.721\,{\rm bit}}\hspace{0.05cm}.$$
(4) Für die differentielle Rückschlussentropie gilt entsprechend:
- $$h(X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y) = h(X) - I(X;Y) = -2 \,{\rm nat} - 0.5 \,{\rm nat} \hspace{0.15cm}\underline{= -2.5\,{\rm nat}= -3.607\,{\rm bit}}\hspace{0.05cm}.$$
- Alle hier berechneten Größen sind in der Grafik zusammengestellt.
- Pfeile nach oben kennzeichnen einen positiven Beitrag, Pfeile nach unten einen negativen.
(5) Richtig sind die Lösungsvorschläge 1 bis 3.
Nochmals zur Verdeutlichung:
- Für die Transinformation gilt stets $I(X;Y) \ge 0$.
- Im wertdiskreten Fall gibt es keine negative Entropie, jedoch im wertkontinuierlichen.