Aufgaben:Aufgabe 4.12: Berechnungen zur 16-QAM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 57: Zeile 57:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Der Quotient $E_{\rm S}/E$ ergibt sich als der mittlere quadratische Abstand der $M = 16$ Signalraumpunkte $\boldsymbol{s}_i$ vom Ursprung.  
+
'''(1)'''  Der Quotient  $E_{\rm S}/E$  ergibt sich als der mittlere quadratische Abstand der  $M = 16$  Signalraumpunkte  $\boldsymbol{s}_i$  vom Ursprung.  
*Mit der gegebenen Signalraumkonstellation der 16–QAM erhält man:
+
*Mit der gegebenen Signalraumkonstellation der  "16–QAM"  erhält man:
 
:$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} { E}/{ 16} \cdot \left [ 4 \cdot (1^2 + 1^2) + 8 \cdot (1^2 + 3^2) + 4 \cdot (3^2 + 3^2)\right ]={ E}/{ 16} \cdot \left [ 4 \cdot 2 + 8 \cdot 10 + 4 \cdot 18\right ] = 10 \cdot E = \underline{10 \ {\rm mWs}}
 
:$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} { E}/{ 16} \cdot \left [ 4 \cdot (1^2 + 1^2) + 8 \cdot (1^2 + 3^2) + 4 \cdot (3^2 + 3^2)\right ]={ E}/{ 16} \cdot \left [ 4 \cdot 2 + 8 \cdot 10 + 4 \cdot 18\right ] = 10 \cdot E = \underline{10 \ {\rm mWs}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Zum gleichen Ergebnis kommt man mit der im [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Theorieteil]] angegebenen Gleichung
+
*Zum gleichen Ergebnis kommt man mit der im  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Theorieteil]]  angegebenen Gleichung:
 
:$$E_{\rm S} = \frac{ 2 \cdot (M-1)}{ 3 } \cdot  E = \frac{ 2 \cdot 15}{ 3 } \cdot  E = 10 E
 
:$$E_{\rm S} = \frac{ 2 \cdot (M-1)}{ 3 } \cdot  E = \frac{ 2 \cdot 15}{ 3 } \cdot  E = 10 E
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(2)'''  Jedes einzelne Symbol stellt vier Binärsymbole dar. Damit ist die mittlere Energie pro Bit.
+
'''(2)'''  Jedes einzelne Symbol stellt vier Binärsymbole dar.  Damit ist die mittlere Energie pro Bit.
 
:$$E_{\rm B} = \frac{ E_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = 2.5 \cdot  E = \underline{2.5 \ {\rm mWs}}
 
:$$E_{\rm B} = \frac{ E_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = 2.5 \cdot  E = \underline{2.5 \ {\rm mWs}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Zeile 73: Zeile 73:
  
 
[[Datei:P_ID2063__Dig_A_4_12c.png|right|frame|Zur Verdeutlichung der 16–QAM–Fehlerwahrscheinlichkeit]]  
 
[[Datei:P_ID2063__Dig_A_4_12c.png|right|frame|Zur Verdeutlichung der 16–QAM–Fehlerwahrscheinlichkeit]]  
'''(3)'''&nbsp; Die <i>Union Bound</i> ist eine obere Schranke für die Symbolfehlerwahrscheinlichkeit.  
+
'''(3)'''&nbsp; Die&nbsp; "Union Bound"&nbsp; ist eine obere Schranke für die Symbolfehlerwahrscheinlichkeit.  
 
*Sie berücksichtigt nur den Übergang zu benachbarten Entscheidungsregionen aufgrund von AWGN&ndash;Rauschen.
 
*Sie berücksichtigt nur den Übergang zu benachbarten Entscheidungsregionen aufgrund von AWGN&ndash;Rauschen.
*Aus der Grafik geht hervor, dass die Ecksymbole (gelb gefüllt) nur zu zwei anderen Symbolen hin verfälscht werden können und die restlichen Randsymbole (grüne Füllung) in drei Richtungen.  
+
 
*Der &bdquo;worst case&rdquo; sind die vier inneren Symbole (mit blauer Füllung) mit jeweils vier Verfälschungsmöglichkeiten. Daraus folgt:
+
*Aus der Grafik geht hervor,&nbsp; dass die Ecksymbole&nbsp; (gelb gefüllt)&nbsp; nur zu zwei anderen Symbolen hin verfälscht werden können und die restlichen Randsymbole&nbsp; (grüne Füllung)&nbsp; in drei Richtungen.
 +
 +
*Der&nbsp; "worst case"&nbsp; sind die vier inneren Symbole&nbsp; (mit blauer Füllung)&nbsp; mit jeweils vier Verfälschungsmöglichkeiten.  
 +
 
 +
*Daraus folgt:
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) \le 4 \cdot p = \underline{1.6\%}= p_{\rm UB}
 
:$$p_{\rm S} = {\rm Pr}({\cal{E}}) \le 4 \cdot p = \underline{1.6\%}= p_{\rm UB}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
  
'''(4)'''&nbsp; Zählt man die blauen Pfeile in obiger Grafik, so kommt man auf  
+
'''(4)'''&nbsp; Zählt man die blauen Pfeile in obiger Grafik,&nbsp; so kommt man auf  
 
:$$4 \cdot 2 + 8 \cdot 3 + 4 \cdot 4 = 48.$$  
 
:$$4 \cdot 2 + 8 \cdot 3 + 4 \cdot 4 = 48.$$  
 
*Die mittlere Symbolfehlerwahrscheinlichkeit ist somit gleich
 
*Die mittlere Symbolfehlerwahrscheinlichkeit ist somit gleich
Zeile 87: Zeile 91:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Zum gleichen Ergebnis kommt man mit der im [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Theorieteil]] angegebenen Gleichung
+
*Zum gleichen Ergebnis kommt man mit der im&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Theorieteil]]&nbsp; angegebenen Gleichung:
 
:$$p_{\rm S} = 4p \cdot \left [ 1 - { 1}/{ \sqrt{M}} \right ] = 4p \cdot \left [ 1 - { 1}/{ 4} \right ] = 3p
 
:$$p_{\rm S} = 4p \cdot \left [ 1 - { 1}/{ \sqrt{M}} \right ] = 4p \cdot \left [ 1 - { 1}/{ 4} \right ] = 3p
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
*Beide Gleichungen gelten nur dann exakt, wenn man wie hier diagonale Verfälschungen ausschließt.
+
*Beide Gleichungen gelten nur dann exakt,&nbsp; wenn man wie hier diagonale Verfälschungen ausschließt.
 +
 
  
  
 
'''(5)'''&nbsp; Bei Graycodierung entsprechend der roten Beschriftung in der Grafik bewirkt jeder Symbolfehler genau einen Bitfehler.  
 
'''(5)'''&nbsp; Bei Graycodierung entsprechend der roten Beschriftung in der Grafik bewirkt jeder Symbolfehler genau einen Bitfehler.  
*Da aber mit jedem Symbol $M = 4$ Binärsymbole übertragen werden, ist
+
*Da aber mit jedem Symbol&nbsp; $M = 4$&nbsp; Binärsymbole übertragen werden,&nbsp; ist die mittlere Bitfehlerwahrscheinlichkeit:
 
:$$p_{\rm B} = \frac{ p_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)}   
 
:$$p_{\rm B} = \frac{ p_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)}   
 
= \frac{ 1.2\%}{ 4}  = \underline{0.3\%}
 
= \frac{ 1.2\%}{ 4}  = \underline{0.3\%}

Aktuelle Version vom 20. August 2022, 16:46 Uhr

Signalraumkonstellation der  $\rm 16–QAM$

Die Grafik zeigt die Signalraumkonstellation der  "Quadraturamplitudenmodulation"  mit  $M = 16$  Signalraumpunkten.

Für dieses Modulationsverfahren sollen berechnet werden:

  • die mittlere Energie pro Symbol bzw. pro Bit,
  • die mittlere Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$,
  • die mittlere Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  bei Graycodierung.



Hinweise:

  1. Die Aufgabe behandelt einen Teilaspekt des Kapitels  "Trägerfrequenzsysteme mit kohärenter Demodulation".
  2. Die Gray–Zuordnung ist in der Grafik angegeben  (rote Beschriftung).
  3. Die Wahrscheinlichkeit,  dass das linke obere Symbol in eines der benachbarten Symbole verfälscht wird,  wird mit  $p$  abgekürzt  (blaue Pfeile in der Grafik).
  4. Eine diagonale Verfälschung  ⇒  zwei Bit verfälscht  (grüner Pfeil)  wird ausgeschlossen.
  5. Für den AWGN–Kanal gilt mit dem komplementären Gaußschen Fehlerintegral für diese Hilfsgröße:   $p = {\rm Q} \left ( \sqrt{ { 2E}/{ N_0} }\right )\hspace{0.05cm}.$
  6. Verwenden Sie für numerische Berechnungen  $E = 1 \ \rm mWs$  und  $p = 0.4\%$.
  7. Aus diesen Werten kann die AWGN–Rauschleistungsdichte  $N_0$  näherungsweise berechnet werden:
$$p = {\rm Q} \left ( \sqrt{ { 2E}/{ N_0} }\right ) = 0.004 \hspace{0.1cm}\Rightarrow\hspace{0.1cm} { 2E}{ N_0} \approx 2.65^2 \approx 7 \hspace{0.1cm}\Rightarrow\hspace{0.1cm} N_0 = { E}/{ 3.5}\approx 1.4 \cdot 10^{-4}\,{\rm W/Hz} \hspace{0.05cm}.$$



Fragebogen

1

Es sei  $E = 1 \ \rm mWs$.  Wie groß ist die  "mittlere Energie pro Symbol"?

$E_{\rm S}\ = \ $

$\ \rm mWs$

2

Wie groß ist die  "mittlere Energie pro Bit"?

$E_{\rm B}\ = \ $

$\ \rm mWs$

3

Geben Sie die  (verbesserte)  "Union Bound"  $(p_{\rm UB})$  für  $p = 0.4\%$  an.

$p_{\rm UB} \ = \ $

$\ \%$

4

Berechnen Sie die tatsächliche Symbolfehlerwahrscheinlichkeit  $p_{\rm S} < p_{\rm UB}$.

$p_{\rm S} \ = \ $

$\ \%$

5

Berechnen Sie die tatsächliche Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  bei Graycodierung.

$p_{\rm B} \ = \ $

$\ \%$


Musterlösung

(1)  Der Quotient  $E_{\rm S}/E$  ergibt sich als der mittlere quadratische Abstand der  $M = 16$  Signalraumpunkte  $\boldsymbol{s}_i$  vom Ursprung.

  • Mit der gegebenen Signalraumkonstellation der  "16–QAM"  erhält man:
$$E_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} { E}/{ 16} \cdot \left [ 4 \cdot (1^2 + 1^2) + 8 \cdot (1^2 + 3^2) + 4 \cdot (3^2 + 3^2)\right ]={ E}/{ 16} \cdot \left [ 4 \cdot 2 + 8 \cdot 10 + 4 \cdot 18\right ] = 10 \cdot E = \underline{10 \ {\rm mWs}} \hspace{0.05cm}.$$
  • Zum gleichen Ergebnis kommt man mit der im  Theorieteil  angegebenen Gleichung:
$$E_{\rm S} = \frac{ 2 \cdot (M-1)}{ 3 } \cdot E = \frac{ 2 \cdot 15}{ 3 } \cdot E = 10 E \hspace{0.05cm}.$$


(2)  Jedes einzelne Symbol stellt vier Binärsymbole dar.  Damit ist die mittlere Energie pro Bit.

$$E_{\rm B} = \frac{ E_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = 2.5 \cdot E = \underline{2.5 \ {\rm mWs}} \hspace{0.05cm}.$$


Zur Verdeutlichung der 16–QAM–Fehlerwahrscheinlichkeit

(3)  Die  "Union Bound"  ist eine obere Schranke für die Symbolfehlerwahrscheinlichkeit.

  • Sie berücksichtigt nur den Übergang zu benachbarten Entscheidungsregionen aufgrund von AWGN–Rauschen.
  • Aus der Grafik geht hervor,  dass die Ecksymbole  (gelb gefüllt)  nur zu zwei anderen Symbolen hin verfälscht werden können und die restlichen Randsymbole  (grüne Füllung)  in drei Richtungen.
  • Der  "worst case"  sind die vier inneren Symbole  (mit blauer Füllung)  mit jeweils vier Verfälschungsmöglichkeiten.
  • Daraus folgt:
$$p_{\rm S} = {\rm Pr}({\cal{E}}) \le 4 \cdot p = \underline{1.6\%}= p_{\rm UB} \hspace{0.05cm}.$$


(4)  Zählt man die blauen Pfeile in obiger Grafik,  so kommt man auf

$$4 \cdot 2 + 8 \cdot 3 + 4 \cdot 4 = 48.$$
  • Die mittlere Symbolfehlerwahrscheinlichkeit ist somit gleich
$$p_{\rm S} = { E}/{ 16} \cdot 48 p = 3p = \underline{1.2\%} \hspace{0.05cm}.$$
  • Zum gleichen Ergebnis kommt man mit der im  Theorieteil  angegebenen Gleichung:
$$p_{\rm S} = 4p \cdot \left [ 1 - { 1}/{ \sqrt{M}} \right ] = 4p \cdot \left [ 1 - { 1}/{ 4} \right ] = 3p \hspace{0.05cm}.$$
  • Beide Gleichungen gelten nur dann exakt,  wenn man wie hier diagonale Verfälschungen ausschließt.


(5)  Bei Graycodierung entsprechend der roten Beschriftung in der Grafik bewirkt jeder Symbolfehler genau einen Bitfehler.

  • Da aber mit jedem Symbol  $M = 4$  Binärsymbole übertragen werden,  ist die mittlere Bitfehlerwahrscheinlichkeit:
$$p_{\rm B} = \frac{ p_{\rm S}}{ {\rm log_2} \hspace{0.05cm}(M)} = \frac{ 1.2\%}{ 4} = \underline{0.3\%} \hspace{0.05cm}.$$