Lineare zeitinvariante Systeme: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(25 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 1: Zeile 1:
 
===Kurzer Überblick===
 
===Kurzer Überblick===
  
{{BlaueBox|TEXT=Beschrieben wird aufbauend auf dem Buch  [[Signaldarstellung|"Signaldarstellung"]],  wie man den Einfluss eines Filters auf deterministische Signale mathematisch erfassen kann:
+
{{BlaueBox|TEXT=Beschrieben wird aufbauend auf dem Buch  [[Signaldarstellung|»Signaldarstellung«]],  wie man den Einfluss eines Filters auf deterministische Signale mathematisch erfassen kann:
# Die Systemtheorie analysiert ein  "System"  $($zunächst ein Vierpol$)$  anhand des Zusammenhangs von Ursache  $($am Eingang$)$  und Wirkung  $($am Ausgang$)$.  
+
# Die Systemtheorie analysiert einen Vierpol  $($»System«$)$  anhand von  »Ursache«  ⇒  $[$Eingang   $ X(f)\bullet\!\!-\!\!-\!\!\circ\, x( t )]$  und  »Wirkung«  ⇒  $[$Ausgang  $ Y(f)\bullet\!\!-\!\!-\!\!\circ\, y( t )]$.  
# Bei der Frequenzbereichsbeschreibung sind diese Größen Spektren Fourierreihe zur Beschreibung periodischer Signale mit dem Sonderfall  "Harmonische Schwingung"  und dem Grenzfall  "Gleichsignal".  
+
# Beschreibungsgröße im Frequenzbereich ist der  »Frequenzgang»  $ H(f)=Y(f)/X(f)$,  im Zeitbereich die  »Impulsantwort«  $ h(t)$,  wobei  $ y(t)=x(t)\star h(t)$.
# Gesetzmäßigkeitein Vierpolen der Fouriertransformation zur Beschreibung aperiodischer  $($impulsartiger$)$  Signale und deren Spektren;  erstes und zweites Fourierintegral.
+
# Systemverzerrungen   ⇒   $ y(t)\ne K \cdot x(t - \tau)$;  verzerrungsfreies System:  Ausgang und Eingang unterscheiden sich durch Dämpfung/Verstärkung und Laufzeit.
# Besonderheiten von Bandpass-Signalen und deren Beschreibung durch das analytische Signal und das äquivalentes Tiefpass-Signal.  
+
# Lineare Verzerrungen   ⇒   $ Y(f)=X(f)\cdot H(f)$  $($möglicherweise reversibel$)$;  nichtlineare Verzerrungen   ⇒   Entstehung neuer Frequenzen  $($irreversibel$)$.
# Diskrete Fouriertransformation zur Beschreibung zeitdiskreter Signale,  Anwendung für dier Spektralanalyse,  FFT als effiziente Rechnerimplementierung.
+
# Besonderheiten kausaler Systeme &nbsp; &rArr; &nbsp; $ h(t<0)\equiv 0$;&nbsp; Hilbert-Transformation,&nbsp; Laplace-Transformation; Laplace-Rücktransformation &nbsp; &rArr; &nbsp; Residuensatz.
 +
#Einige Ergebnisse der Leitungstheorie;&nbsp; Koaxialkabelsysteme &nbsp; &rArr; &nbsp; &raquo;Weißes Rauschen&laquo;;&nbsp; Kupfer-Doppeladern &nbsp; &rArr; &nbsp; dominant ist&nbsp; "Nahnebensprechen".
  
  
Die ausschließlich für kausale Signale und Systeme anwendbaren Spektraltransformationen&nbsp; $($Laplacetransformation,&nbsp; z-Transformation,&nbsp; Hilberttransformation$)$&nbsp; werden in diesem Buch nicht behandelt.&nbsp; Hier verweisen wir auf das Buch&nbsp; [[Lineare_zeitinvariante_Systeme|"Lineare zeitinvariante Systeme"]].
+
Der Filtereinfluss auf ein Zufallssignal wird erst später im letzten Kapitel des Buches &nbsp;[[Stochastische Signaltheorie|&raquo;Stochastische Signaltheorie&raquo;]]&nbsp; behandelt.
  
&rArr; &nbsp; Hier zunächst eine&nbsp; &raquo;'''Inhaltsübersicht'''&laquo;&nbsp; anhand der&nbsp; &raquo;'''vier Hauptkapitel'''&laquo;&nbsp; mit insgesamt&nbsp; &raquo;'''zwölf Einzelkapiteln'''&laquo;.}}
+
&rArr; &nbsp; Hier zunächst eine&nbsp; &raquo;'''Inhaltsübersicht'''&laquo;&nbsp; anhand der&nbsp; &raquo;'''vier Hauptkapitel'''&laquo;&nbsp; mit insgesamt&nbsp; &raquo;'''zwölf Einzelkapiteln'''&laquo;&nbsp; und&nbsp; &raquo;'''93 Abschnitten'''&laquo;.}}
  
Beschrieben wird aufbauend auf dem Buch &nbsp;[[Signaldarstellung|"Signaldarstellung"]],&nbsp; wie man den Einfluss eines Filters auf deterministische Signale mathematisch erfassen kann.
 
*Das Buch definiert Verzerrungen und beschreibt die Laplace-Transformation für kausale Systeme sowie die Eigenschaften elektrischer Leitungen.
 
 
*Der Filtereinfluss auf ein Zufallssignal wird erst später im Kapitel 5 des Buches &nbsp;[[Stochastische Signaltheorie|"Stochastische Signaltheorie"]]&nbsp; behandelt.
 
  
 
Hier zunächst eine&nbsp; '''Inhaltsübersicht'''&nbsp; anhand der&nbsp; '''vier Hauptkapitel'''&nbsp; mit insgesamt&nbsp; '''zwölf Einzelkapiteln'''.
 
  
 
===Inhalt===
 
===Inhalt===
Zeile 49: Zeile 44:
 
{{Collapsible-Fuß}}
 
{{Collapsible-Fuß}}
  
Neben diesen Theorieseiten bieten wir zu diesem Thema auch Aufgaben und multimediale Module an,&nbsp; die zur Verdeutlichung des Lehrstoffes beitragen könnten:
+
===Aufgaben und Multimedia===
*[https://www.lntwww.de/Kategorie:Aufgaben_zu_Lineare_zeitinvariante_Systeme  $\text{Aufgaben}$]
+
 
 +
{{BlaueBox|TEXT=
 +
 
 +
Neben diesen Theorieseiten bieten wir auch Aufgaben und multimediale Module zu diesem Thema an,&nbsp; die zur Verdeutlichung des Lehrstoffes beitragen könnten:
 +
 
 +
$(1)$&nbsp; &nbsp; [https://www.lntwww.de/Kategorie:Aufgaben_zu_Lineare_zeitinvariante_Systeme  $\text{Aufgaben}$]
 +
 
 +
$(2)$&nbsp; &nbsp; [[LNTwww:Lernvideos_zu_Lineare_zeitinvariante_Systeme|$\text{Lernvideos}$]]
 +
 
 +
$(3)$&nbsp; &nbsp; [[LNTwww:Applets_zu_Lineare_und_zeitinvariante_Systeme|$\text{Applets}$]]&nbsp;}}
 +
<br>
 +
===Weitere Links:===
 +
 
  
*[[LNTwww:Lernvideos_zu_Lineare_zeitinvariante_Systeme|$\text{Lernvideos}$]]
+
{{BlaueBox|TEXT=
 +
$(4)$&nbsp; &nbsp; [[LNTwww:Literaturempfehlung_zu_Lineare_zeitinvariante_Systeme|$\text{Literaturempfehlungen}$]]
  
*[[LNTwww:Applets_zu_Lineare_zeitinvariante_Systeme|$\text{Applets}$]]&nbsp;
+
$(5)$&nbsp; &nbsp; [[LNTwww:Impressum_zum_Buch_"Lineare_und_zeitinvariante_Systeme"|$\text{Impressum}$]] }}
<br><br>
 
$\text{Weitere Links:}$
 
 
<br><br>
 
<br><br>
$(1)$&nbsp; &nbsp; [[LNTwww:Literaturempfehlung_zu_Lineare_zeitinvariante_Systeme|$\text{Literaturempfehlungen zum Buch}$]]
 
  
$(2)$&nbsp; &nbsp; [[LNTwww:Weitere_Hinweise_zum_Buch_Lineare_zeitinvariante_Systeme|$\text{Allgemeine Hinweise zum Buch}$]] &nbsp; $($Autoren,&nbsp; weitere Beteiligte,&nbsp; Materialien als Ausgangspunkt des Buches,&nbsp; Quellenverzeichnis$)$
 
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 26. März 2023, 14:44 Uhr

Kurzer Überblick

Beschrieben wird aufbauend auf dem Buch  »Signaldarstellung«,  wie man den Einfluss eines Filters auf deterministische Signale mathematisch erfassen kann:

  1. Die Systemtheorie analysiert einen Vierpol  $($»System«$)$  anhand von  »Ursache«  ⇒  $[$Eingang  $ X(f)\bullet\!\!-\!\!-\!\!\circ\, x( t )]$  und  »Wirkung«  ⇒  $[$Ausgang  $ Y(f)\bullet\!\!-\!\!-\!\!\circ\, y( t )]$.
  2. Beschreibungsgröße im Frequenzbereich ist der  »Frequenzgang»  $ H(f)=Y(f)/X(f)$,  im Zeitbereich die  »Impulsantwort«  $ h(t)$,  wobei  $ y(t)=x(t)\star h(t)$.
  3. Systemverzerrungen   ⇒   $ y(t)\ne K \cdot x(t - \tau)$;  verzerrungsfreies System:  Ausgang und Eingang unterscheiden sich durch Dämpfung/Verstärkung und Laufzeit.
  4. Lineare Verzerrungen   ⇒   $ Y(f)=X(f)\cdot H(f)$  $($möglicherweise reversibel$)$;  nichtlineare Verzerrungen   ⇒   Entstehung neuer Frequenzen  $($irreversibel$)$.
  5. Besonderheiten kausaler Systeme   ⇒   $ h(t<0)\equiv 0$;  Hilbert-Transformation,  Laplace-Transformation; Laplace-Rücktransformation   ⇒   Residuensatz.
  6. Einige Ergebnisse der Leitungstheorie;  Koaxialkabelsysteme   ⇒   »Weißes Rauschen«;  Kupfer-Doppeladern   ⇒   dominant ist  "Nahnebensprechen".


Der Filtereinfluss auf ein Zufallssignal wird erst später im letzten Kapitel des Buches  »Stochastische Signaltheorie»  behandelt.

⇒   Hier zunächst eine  »Inhaltsübersicht«  anhand der  »vier Hauptkapitel«  mit insgesamt  »zwölf Einzelkapiteln«  und  »93 Abschnitten«.


Inhalt

Aufgaben und Multimedia

Neben diesen Theorieseiten bieten wir auch Aufgaben und multimediale Module zu diesem Thema an,  die zur Verdeutlichung des Lehrstoffes beitragen könnten:

$(1)$    $\text{Aufgaben}$

$(2)$    $\text{Lernvideos}$

$(3)$    $\text{Applets}$ 


Weitere Links: