Stochastische Signaltheorie/Momente einer diskreten Zufallsgröße: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Diskrete Zufallsgrößen |Vorherige Seite=Wahrscheinlichkeit und relative Häufigkeit |Nächste Seite=Binomialverteilung }} ==Berechnung…“)
 
 
(20 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
 
}}
 
}}
 
==Berechnung als Schar- bzw. Zeitmittelwert==
 
==Berechnung als Schar- bzw. Zeitmittelwert==
Die Wahrscheinlichkeiten bzw. die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße. Reduzierte Informationen erhält man durch die so genannten Momente $m_k$, wobei $k$ eine natürliche Zahl darstellt.  
+
<br>
 +
Die Wahrscheinlichkeiten und die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße.
  
Unter der hier stillschweigend vorausgesetzten Ergodizität  gibt es für das Moment $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:
+
Reduzierte Informationen erhält man durch die so genannten Momente&nbsp; $m_k$, wobei&nbsp; $k$&nbsp; eine natürliche Zahl darstellt.  
*die Scharmittelung bzw. ''Erwartungswertbildung'' (Mittelung über alle möglichen Werte):
 
$$m_k = \rm E \it [z^k] = \sum_{\mu = \rm 1}^{\it M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E[...]:} \hspace{0.1cm} \rm Erwartungswert ,$$
 
*die Zeitmittelung über die Zufallsfolge 〈 $z_ν$〉 mit der Laufvariablen $ν =$ 1 , ... , $N$:
 
$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie:\hspace{0.1cm}Zeitmittelwert.$$
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Zwei alternative Berechnungsmöglichkeiten:}$&nbsp;
  
Beide Berechnungsarten führen für genügend große Werte von $N$ zum gleichen asymptotischen Ergebnis. Bei endlichem $N$ ergibt sich ein vergleichbarer Fehler, als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.  
+
Unter der hier stillschweigend vorausgesetzten Bedingung&nbsp; [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Ergodische_Zufallsprozesse|"Ergodizität"]]&nbsp;  gibt es für das Moment&nbsp; $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:
 +
*die&nbsp; '''Scharmittelung'''&nbsp; bzw.&nbsp; "Erwartungswertbildung" &nbsp; &rArr; &nbsp; Mittelung über alle möglichen Werte&nbsp;  $\{ z_\mu\}$&nbsp; mit der Laufvariablen&nbsp; $\mu = 1 ,  \hspace{0.1cm}\text{ ...}  \hspace{0.1cm} , M$:
 +
:$$m_k = {\rm E} \big[z^k \big] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E\big[\text{ ...} \big]\hspace{-0.1cm}:} \hspace{0.3cm} \rm Erwartungswert ;$$
 +
*die&nbsp; '''Zeitmittelung'''&nbsp; über die Zufallsfolge&nbsp;  $\langle z_ν\rangle$&nbsp; mit der Laufvariablen&nbsp; $ν = 1 ,  \hspace{0.1cm}\text{ ...}  \hspace{0.1cm} , N$:
 +
:$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie\hspace{-0.1cm}:\hspace{0.1cm}Zeitmittelwert.$$}}
  
==Linearer Mittelwert - Gleichanteil==
 
  
 +
Anzumerken ist:
 +
*Beide Berechnungsarten führen bei genügend großen Werten von&nbsp; $N$&nbsp; zum gleichen asymptotischen Ergebnis.
 +
*Bei endlichem&nbsp; $N$&nbsp; ergibt sich ein vergleichbarer Fehler,&nbsp; als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.
  
 +
==Moment erster Ordnung &ndash; Linearer Mittelwert &ndash; Gleichanteil==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Mit&nbsp; $k = 1$&nbsp; erhält man aus der allgemeinen Gleichung das Moment erster Ordnung &nbsp; &rArr; &nbsp; den&nbsp; '''linearen Mittelwert'''&nbsp; (englisch:&nbsp; "mean"):
 +
:$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
 +
*Der linke Teil dieser Gleichung beschreibt die Scharmittelung&nbsp; (über alle möglichen Werte),
 +
:während die rechte Gleichung die Bestimmung als Zeitmittelwert angibt.
 +
*In Zusammenhang mit Signalen wird diese Größe auch als der&nbsp; [[Signaldarstellung/Gleichsignal_-_Grenzfall_eines_periodischen_Signals|Gleichanteil]]&nbsp; bezeichnet.}}
  
  
 +
[[Datei:P_ID49__Sto_T_2_2_S2_neu.png|right|frame|Gleichanteil&nbsp; $m_1$&nbsp; eines Binärsignals]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 1:}$&nbsp; Ein Binärsignal&nbsp; $x(t)$&nbsp; mit den beiden möglichen Amplitudenwerten
 +
*$1\hspace{0.03cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm L)$,
 +
*$3\hspace{0.03cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm H)$
  
  
 +
sowie den Auftrittswahrscheinlichkeiten&nbsp; $p_{\rm L} = 0.2$&nbsp; bzw.&nbsp; $p_{\rm H} = 0.8$&nbsp; besitzt den linearen Mittelwert (Gleichanteil )
 +
:$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$
 +
Dieser ist in der Grafik als rote Linie eingezeichnet.
 +
 +
Bestimmt man diese Kenngröße durch Zeitmittelung über die dargestellten&nbsp; $N = 12$&nbsp; Signalwerte,&nbsp; so erhält man einen etwas kleineren Wert:
 +
:$$m_1\hspace{0.01cm}' = 4/12 \cdot 1\,{\rm V}+ 8/12 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$
 +
Hier wurden die Auftrittswahrscheinlichkeiten&nbsp; $p_{\rm L} = 0.2$&nbsp; bzw.&nbsp; $p_{\rm H} = 0.8$&nbsp; durch die entsprechenden Häufigkeiten&nbsp; $h_{\rm L} = 4/12$&nbsp; und&nbsp; $h_{\rm H} = 8/12$&nbsp; ersetzt.&nbsp; Der relative Fehler aufgrund der unzureichenden Folgenlänge&nbsp; $N$&nbsp; ist im Beispiel größer als&nbsp; $10\%$.
 +
 +
$\text{Hinweis zu unserer (zugegebenermaßen etwas ungewöhnlicher)  Nomenklatur:}$
 +
 +
Wir bezeichnen hier Binärsymbole wie in der Schaltungstechnik  mit&nbsp; $\rm L$&nbsp; ("Low") und&nbsp; $\rm H$&nbsp; ("High"),&nbsp; um Verwechslungen zu vermeiden.
 +
*In der Codierungstheorie wird sinnvollerweise&nbsp; $\{ \text{L, H}\}$&nbsp; auf&nbsp; $\{0, 1\}$&nbsp; abgebildet,&nbsp; um die Möglichkeiten der Modulo-Algebra nutzen zu können.
 +
*Zur Beschreibung der Modulation mit bipolaren&nbsp; (antipodalen)&nbsp; Signalen wählt man dagegen besser die Zuordnung&nbsp; $\{ \text{L, H}\}$  ⇔ $ \{-1, +1\}$.
 +
}}
 +
 +
==Moment zweiter Ordnung &ndash; Leistung &ndash; Varianz &ndash; Streuung==
 +
<br>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definitionen:}$&nbsp;
 +
 +
*Analog zum linearen Mittelwert erhält man mit&nbsp; $k = 2$&nbsp; das&nbsp; '''Moment zweiter Ordnung'''&nbsp; (englisch:&nbsp; "second order moment"):
 +
:$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2.$$
 +
 +
*Zusammen mit dem Gleichanteil&nbsp; $m_1$&nbsp; kann daraus als weitere Kenngröße die&nbsp; '''Varianz'''&nbsp; (englisch:&nbsp; "variance")&nbsp; $σ^2$&nbsp; bestimmt werden&nbsp; ("Satz von Steiner"):
 +
:$$\sigma^2=m_2-m_1^2.$$
 +
*Die&nbsp; '''Streuung'''&nbsp; $σ$&nbsp; ist die Quadratwurzel der Varianz;&nbsp; manchmal wird diese Größe auch&nbsp; "Standardabweichung"&nbsp; (englisch:&nbsp; "standard deviation")&nbsp; genannt:
 +
:$$\sigma=\sqrt{m_2-m_1^2}.$$}}
 +
 +
 +
$\text{Hinweise zu den Einheiten:}$
 +
 +
#Bei einem Zufallssignal&nbsp; $x(t)$&nbsp; gibt&nbsp; $m_2$&nbsp; die gesamte Leistung&nbsp; (Gleichleistung plus Wechselleitung)&nbsp; an,&nbsp; bezogen auf den Widerstand&nbsp; $1 \hspace{0.03cm} Ω$.
 +
#Beschreibt&nbsp; $x(t)$&nbsp; einen Spannungsverlauf,&nbsp; so besitzt dementsprechend&nbsp; $m_2$&nbsp; die Einheit&nbsp; ${\rm V}^2$&nbsp; und der Effektivwert&nbsp; (englisch:&nbsp; "root mean square")&nbsp; $x_{\rm eff}=\sqrt{m_2}$&nbsp; die Einheit&nbsp; ${\rm V}$.&nbsp; Die Gesamtleistung für beliebigen Bezugswiderstand&nbsp; $R$&nbsp; berechnet sich zu &nbsp; $P=m_2/R$&nbsp; und besitzt dementsprechend&nbsp; die Einheit&nbsp; $\rm V^2/(V/A) = W$.
 +
#Beschreibt&nbsp; $x(t)$&nbsp; einen Stromverlauf,&nbsp; so hat&nbsp; $m_2$&nbsp; die Einheit&nbsp; ${\rm A}^2$&nbsp; und der Effektivwert&nbsp; $x_{\rm eff}=\sqrt{m_2}$&nbsp; die Einheit&nbsp; ${\rm A}$.&nbsp; Die Gesamtleistung für beliebigen Bezugswiderstand&nbsp; $R$&nbsp; berechnet sich zu &nbsp; $P=m_2\cdot R$&nbsp; und besitzt dementsprechend&nbsp; die Einheit&nbsp; $\rm A^2 \cdot(V/A) = W$.
 +
#Nur im Sonderfall&nbsp; $m_1=0$&nbsp; ist die Varianz&nbsp; $σ^2=m_2$.&nbsp;  Dann stimmt auch die Standardabweichung &nbsp; $σ$&nbsp; mit dem Effektivwert&nbsp; $x_{\rm eff}$&nbsp; überein.
 +
 +
 +
Das Lernvideo &nbsp; [[Momentenberechnung bei diskreten Zufallsgrößen (Lernvideo)|Momentenberechnung bei diskreten Zufallsgrößen]] &nbsp; verdeutlicht die definierten Größen am Beispiel eines Digitalsignals.
 +
 +
[[Datei:P_ID456__Sto_T_2_2_S3_neu.png | right|frame|Standardabweichung eines Binärsignals]]
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp;
 +
Bei einem Binärsignal&nbsp; $x(t)$&nbsp; mit den Amplitudenwerten
 +
*$1\hspace{0.03cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm L)$,
 +
*$3\hspace{0.03cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm H)$
 +
 +
 +
sowie den Auftrittswahrscheinlichkeiten&nbsp; $p_{\rm L} = 0.2$&nbsp; bzw.&nbsp; $p_{\rm H} = 0.8$&nbsp; ergibt sich für das zweite Moment: 
 +
:$$m_2  = 0.2 \cdot (1\,{\rm V})^2+ 0.8 \cdot (3\,{\rm V})^2 = 7.4 \hspace{0.1cm}{\rm V}^2,$$
 +
 +
Der Effektivwert&nbsp; $x_{\rm eff}=\sqrt{m_2}=2.72\,{\rm V}$&nbsp; ist unabhängig vom Bezugswiderstand&nbsp; $R$&nbsp; im Gegensatz zur Gesamtleistung. Für diese ergibt sich mit&nbsp; $R=1 \hspace{0.1cm} Ω$&nbsp; der Wert&nbsp; $P=7.4 \hspace{0.1cm}{\rm W}$,&nbsp; mit&nbsp; $R=50 \hspace{0.1cm} Ω$&nbsp; dagegen nur&nbsp; $P=0.148 \hspace{0.1cm}{\rm W}$.
 +
   
 +
Mit dem Gleichanteil&nbsp; $m_1 = 2.6 \hspace{0.05cm}\rm V$&nbsp; $($siehe&nbsp; [[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße#Linearer_Mittelwert_-_Gleichanteil|$\text{Beispiel 1})$]]&nbsp; folgt daraus für
 +
*die Varianz&nbsp;  $ σ^2 = 7.4 \hspace{0.05cm}{\rm V}^2 - \big [2.6 \hspace{0.05cm}\rm V\big ]^2 = 0.64\hspace{0.05cm}  {\rm V}^2$,
 +
*die Standardabweichung (Streuung)&nbsp; $σ = 0.8 \hspace{0.05cm} \rm V$.
 +
 +
 +
Die gleiche Varianz&nbsp;  $ σ^2 =  0.64\hspace{0.05cm}  {\rm V}^2$ und die gleiche Standardabweichung&nbsp; $σ = 0.8 \hspace{0.05cm} \rm V$&nbsp; ergeben sich für die Amplituden&nbsp; $0\hspace{0.05cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm L)$&nbsp; und $2\hspace{0.05cm}\rm V$&nbsp; $($für das Symbol&nbsp; $\rm H)$,&nbsp; vorausgesetzt, die Auftrittswahrscheinlichkeiten&nbsp; $p_{\rm L} = 0.2$&nbsp; und&nbsp; $p_{\rm H} = 0.8$&nbsp; bleiben gleich.&nbsp; Nur der Gleichanteil und die Gesamtleistung ändern sich:
 +
:$$m_1 = 1.6 \hspace{0.05cm}{\rm V}, $$
 +
:$$P = {m_1}^2 +\sigma^2 = 3.2 \hspace{0.05cm}{\rm V}^2.$$}}
 +
 +
==Aufgaben zum Kapitel==
 +
<br>
 +
[[Aufgaben:2.2 Mehrstufensignale|Aufgabe 2.2: Mehrstufensignale]]
 +
 +
[[Aufgaben:2.2Z_Diskrete_Zufallsgrößen|Aufgabe 2.2Z: Diskrete Zufallsgrößen]]
  
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 18. Februar 2022, 14:26 Uhr

Berechnung als Schar- bzw. Zeitmittelwert


Die Wahrscheinlichkeiten und die relativen Häufigkeiten liefern weitreichende Informationen über eine diskrete Zufallsgröße.

Reduzierte Informationen erhält man durch die so genannten Momente  $m_k$, wobei  $k$  eine natürliche Zahl darstellt.

$\text{Zwei alternative Berechnungsmöglichkeiten:}$ 

Unter der hier stillschweigend vorausgesetzten Bedingung  "Ergodizität"  gibt es für das Moment  $k$-ter Ordnung zwei unterschiedliche Berechnungsmöglichkeiten:

  • die  Scharmittelung  bzw.  "Erwartungswertbildung"   ⇒   Mittelung über alle möglichen Werte  $\{ z_\mu\}$  mit der Laufvariablen  $\mu = 1 , \hspace{0.1cm}\text{ ...} \hspace{0.1cm} , M$:
$$m_k = {\rm E} \big[z^k \big] = \sum_{\mu = 1}^{M}p_\mu \cdot z_\mu^k \hspace{2cm} \rm mit \hspace{0.1cm} {\rm E\big[\text{ ...} \big]\hspace{-0.1cm}:} \hspace{0.3cm} \rm Erwartungswert ;$$
  • die  Zeitmittelung  über die Zufallsfolge  $\langle z_ν\rangle$  mit der Laufvariablen  $ν = 1 , \hspace{0.1cm}\text{ ...} \hspace{0.1cm} , N$:
$$m_k=\overline{z_\nu^k}=\hspace{0.01cm}\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=\rm 1}^{\it N}z_\nu^k\hspace{1.7cm}\rm mit\hspace{0.1cm}\ddot{u}berstreichender\hspace{0.1cm}Linie\hspace{-0.1cm}:\hspace{0.1cm}Zeitmittelwert.$$


Anzumerken ist:

  • Beide Berechnungsarten führen bei genügend großen Werten von  $N$  zum gleichen asymptotischen Ergebnis.
  • Bei endlichem  $N$  ergibt sich ein vergleichbarer Fehler,  als wenn die Wahrscheinlichkeit durch die relative Häufigkeit angenähert wird.

Moment erster Ordnung – Linearer Mittelwert – Gleichanteil


$\text{Definition:}$  Mit  $k = 1$  erhält man aus der allgemeinen Gleichung das Moment erster Ordnung   ⇒   den  linearen Mittelwert  (englisch:  "mean"):

$$m_1 =\sum_{\mu=1}^{M}p_\mu\cdot z_\mu =\lim_{N\to\infty}\frac{1}{N}\sum_{\nu=1}^{N}z_\nu.$$
  • Der linke Teil dieser Gleichung beschreibt die Scharmittelung  (über alle möglichen Werte),
während die rechte Gleichung die Bestimmung als Zeitmittelwert angibt.
  • In Zusammenhang mit Signalen wird diese Größe auch als der  Gleichanteil  bezeichnet.


Gleichanteil  $m_1$  eines Binärsignals

$\text{Beispiel 1:}$  Ein Binärsignal  $x(t)$  mit den beiden möglichen Amplitudenwerten

  • $1\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm L)$,
  • $3\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm H)$


sowie den Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  besitzt den linearen Mittelwert (Gleichanteil )

$$m_1 = 0.2 \cdot 1\,{\rm V}+ 0.8 \cdot 3\,{\rm V}= 2.6 \,{\rm V}. $$

Dieser ist in der Grafik als rote Linie eingezeichnet.

Bestimmt man diese Kenngröße durch Zeitmittelung über die dargestellten  $N = 12$  Signalwerte,  so erhält man einen etwas kleineren Wert:

$$m_1\hspace{0.01cm}' = 4/12 \cdot 1\,{\rm V}+ 8/12 \cdot 3\,{\rm V}= 2.33 \,{\rm V}. $$

Hier wurden die Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  durch die entsprechenden Häufigkeiten  $h_{\rm L} = 4/12$  und  $h_{\rm H} = 8/12$  ersetzt.  Der relative Fehler aufgrund der unzureichenden Folgenlänge  $N$  ist im Beispiel größer als  $10\%$.

$\text{Hinweis zu unserer (zugegebenermaßen etwas ungewöhnlicher) Nomenklatur:}$

Wir bezeichnen hier Binärsymbole wie in der Schaltungstechnik mit  $\rm L$  ("Low") und  $\rm H$  ("High"),  um Verwechslungen zu vermeiden.

  • In der Codierungstheorie wird sinnvollerweise  $\{ \text{L, H}\}$  auf  $\{0, 1\}$  abgebildet,  um die Möglichkeiten der Modulo-Algebra nutzen zu können.
  • Zur Beschreibung der Modulation mit bipolaren  (antipodalen)  Signalen wählt man dagegen besser die Zuordnung  $\{ \text{L, H}\}$ ⇔ $ \{-1, +1\}$.

Moment zweiter Ordnung – Leistung – Varianz – Streuung


$\text{Definitionen:}$ 

  • Analog zum linearen Mittelwert erhält man mit  $k = 2$  das  Moment zweiter Ordnung  (englisch:  "second order moment"):
$$m_2 =\sum_{\mu=\rm 1}^{\it M}p_\mu\cdot z_\mu^2 =\lim_{N\to\infty}\frac{\rm 1}{\it N}\sum_{\nu=\rm 1}^{\it N}z_\nu^2.$$
  • Zusammen mit dem Gleichanteil  $m_1$  kann daraus als weitere Kenngröße die  Varianz  (englisch:  "variance")  $σ^2$  bestimmt werden  ("Satz von Steiner"):
$$\sigma^2=m_2-m_1^2.$$
  • Die  Streuung  $σ$  ist die Quadratwurzel der Varianz;  manchmal wird diese Größe auch  "Standardabweichung"  (englisch:  "standard deviation")  genannt:
$$\sigma=\sqrt{m_2-m_1^2}.$$


$\text{Hinweise zu den Einheiten:}$

  1. Bei einem Zufallssignal  $x(t)$  gibt  $m_2$  die gesamte Leistung  (Gleichleistung plus Wechselleitung)  an,  bezogen auf den Widerstand  $1 \hspace{0.03cm} Ω$.
  2. Beschreibt  $x(t)$  einen Spannungsverlauf,  so besitzt dementsprechend  $m_2$  die Einheit  ${\rm V}^2$  und der Effektivwert  (englisch:  "root mean square")  $x_{\rm eff}=\sqrt{m_2}$  die Einheit  ${\rm V}$.  Die Gesamtleistung für beliebigen Bezugswiderstand  $R$  berechnet sich zu   $P=m_2/R$  und besitzt dementsprechend  die Einheit  $\rm V^2/(V/A) = W$.
  3. Beschreibt  $x(t)$  einen Stromverlauf,  so hat  $m_2$  die Einheit  ${\rm A}^2$  und der Effektivwert  $x_{\rm eff}=\sqrt{m_2}$  die Einheit  ${\rm A}$.  Die Gesamtleistung für beliebigen Bezugswiderstand  $R$  berechnet sich zu   $P=m_2\cdot R$  und besitzt dementsprechend  die Einheit  $\rm A^2 \cdot(V/A) = W$.
  4. Nur im Sonderfall  $m_1=0$  ist die Varianz  $σ^2=m_2$.  Dann stimmt auch die Standardabweichung   $σ$  mit dem Effektivwert  $x_{\rm eff}$  überein.


Das Lernvideo   Momentenberechnung bei diskreten Zufallsgrößen   verdeutlicht die definierten Größen am Beispiel eines Digitalsignals.

Standardabweichung eines Binärsignals

$\text{Beispiel 2:}$  Bei einem Binärsignal  $x(t)$  mit den Amplitudenwerten

  • $1\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm L)$,
  • $3\hspace{0.03cm}\rm V$  $($für das Symbol  $\rm H)$


sowie den Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  bzw.  $p_{\rm H} = 0.8$  ergibt sich für das zweite Moment:

$$m_2 = 0.2 \cdot (1\,{\rm V})^2+ 0.8 \cdot (3\,{\rm V})^2 = 7.4 \hspace{0.1cm}{\rm V}^2,$$

Der Effektivwert  $x_{\rm eff}=\sqrt{m_2}=2.72\,{\rm V}$  ist unabhängig vom Bezugswiderstand  $R$  im Gegensatz zur Gesamtleistung. Für diese ergibt sich mit  $R=1 \hspace{0.1cm} Ω$  der Wert  $P=7.4 \hspace{0.1cm}{\rm W}$,  mit  $R=50 \hspace{0.1cm} Ω$  dagegen nur  $P=0.148 \hspace{0.1cm}{\rm W}$.

Mit dem Gleichanteil  $m_1 = 2.6 \hspace{0.05cm}\rm V$  $($siehe  $\text{Beispiel 1})$  folgt daraus für

  • die Varianz  $ σ^2 = 7.4 \hspace{0.05cm}{\rm V}^2 - \big [2.6 \hspace{0.05cm}\rm V\big ]^2 = 0.64\hspace{0.05cm} {\rm V}^2$,
  • die Standardabweichung (Streuung)  $σ = 0.8 \hspace{0.05cm} \rm V$.


Die gleiche Varianz  $ σ^2 = 0.64\hspace{0.05cm} {\rm V}^2$ und die gleiche Standardabweichung  $σ = 0.8 \hspace{0.05cm} \rm V$  ergeben sich für die Amplituden  $0\hspace{0.05cm}\rm V$  $($für das Symbol  $\rm L)$  und $2\hspace{0.05cm}\rm V$  $($für das Symbol  $\rm H)$,  vorausgesetzt, die Auftrittswahrscheinlichkeiten  $p_{\rm L} = 0.2$  und  $p_{\rm H} = 0.8$  bleiben gleich.  Nur der Gleichanteil und die Gesamtleistung ändern sich:

$$m_1 = 1.6 \hspace{0.05cm}{\rm V}, $$
$$P = {m_1}^2 +\sigma^2 = 3.2 \hspace{0.05cm}{\rm V}^2.$$

Aufgaben zum Kapitel


Aufgabe 2.2: Mehrstufensignale

Aufgabe 2.2Z: Diskrete Zufallsgrößen