Aufgaben:Aufgabe 1.4Z: Summe von Ternärgrößen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Statistische Abhängigkeit und Unabhängigkeit}}
 
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Statistische Abhängigkeit und Unabhängigkeit}}
  
[[Datei:P_ID79__Sto_Z_1_4.png|right|]]
+
[[Datei:P_ID79__Sto_Z_1_4.png|right|frame|Summe zweier Ternärgrößen  $x$  und  $y$]]
 
Gegeben seien die ternären Zufallsgrößen
 
Gegeben seien die ternären Zufallsgrößen
  
*$x ∈ {–2, 0, +2}$,
+
:$$x ∈ {–2, \ 0, +2},$$
 +
:$$y ∈ {–1, \ 0, +1}.$$
  
*$y ∈ {–1, 0, +1}$.
+
*Diese beiden Ternärwerte treten jeweils mit gleicher Wahrscheinlichkeit auf. 
 +
*Daraus wird als eine neue Zufallsgröße die Summe  $s = x + y$  gebildet.
 +
*Das nebenstehendes Schema zeigt,  dass die Summe  $s$  alle ganzzahligen Werte zwischen  $–3$  und  $+3$  annehmen kann: 
  
Diese beiden Ternärwerte treten jeweils mit gleicher Wahrscheinlichkeit auf. Daraus wird als eine neue Zufallsgröße die Summe $s = x + y$ gebildet.
+
:$$ s \in \{-3, -2, -1, \ 0, +1, +2, +3\}.$$
  
Nebenstehendes Schema zeigt, dass die Summe s alle ganzzahligen Werte zwischen –3 und +3 annehmen kann:
 
  
<math> s \in \{-3, -2, -1, 0, +1, +2, +3\}</math>,
+
 
 +
 
 +
 
 +
Hinweise:
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]].
 
   
 
   
'''Hinweis''': Diese Aufgabe bezieht sich auf den Lehrstoff von Kapitel 1.3. Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
+
*Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo&nbsp;
 +
::[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]].
 +
 
 +
 
  
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Wahrscheinlichkeit, dass die Summe $s$ positv ist:
+
{Berechnen Sie die Wahrscheinlichkeit,&nbsp; dass die Summe&nbsp; $s$&nbsp; positv ist:
 
|type="{}"}
 
|type="{}"}
$Pr(s>0)$ = { 0.4444 3% }
+
${\rm Pr}(s>0) \ = \ $ { 0.4444 3% }
  
{Berechnen Sie die Wahrscheinlichkeit, dass sowohl die Eingangsgröße x als auch die Summe s positiv sind:
+
{Berechnen Sie die Wahrscheinlichkeit,&nbsp; dass sowohl die Eingangsgröße&nbsp; $x$&nbsp; als auch die Summe&nbsp; $s$&nbsp; positiv sind:
 
|type="{}"}
 
|type="{}"}
$Pr((x>0) \cap (s>0))$ = { 0.3333 3% }
+
${\rm Pr}\big [(x>0) \cap (s>0)\big] \ = \ $ { 0.3333 3% }
  
{Berechnen Sie die bedingte Wahrscheinlichkeit, dass die Eingangsgröße x > 0 ist, wenn s > 0 gilt:
+
{Berechnen Sie die bedingte Wahrscheinlichkeit,&nbsp; dass die Eingangsgröße&nbsp; $x > 0$&nbsp; ist, wenn&nbsp; $s > 0$&nbsp; gilt:
 
|type="{}"}
 
|type="{}"}
$Pr(x>0|s>0)$ = { 0.75 3% }
+
${\rm Pr}(x>0\hspace{0.05cm}|\hspace{0.05cm}s>0)\ = \ $ { 0.75 3% }
  
{Berechnen Sie die bedingte Wahrscheinlichkeit, dass die Summe s positiv ist, wenn die Eingangsgröße x > 0 ist:
+
{Berechnen Sie die bedingte Wahrscheinlichkeit,&nbsp; dass die Summe&nbsp; $s$&nbsp; positiv ist,&nbsp; wenn die Eingangsgröße&nbsp; $x > 0$&nbsp; ist:
 
|type="{}"}
 
|type="{}"}
$Pr(s>0|x>0)$ = { 1 3% }
+
${\rm Pr}(s>0\hspace{0.05cm}|\hspace{0.05cm}x>0)\ = \ $ { 1 }
  
 
</quiz>
 
</quiz>
Zeile 40: Zeile 49:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
[[Datei:P_ID99__Sto_Z_1_4_a.png|frame|]]
+
[[Datei:P_ID99__Sto_Z_1_4_a.png|right|frame|Ternärgrößen im Venndiagramm]]
:In der nebenstehenden Grafik sind die drei zum Ereignis $&#132;x&nbsp;>&nbsp;0&#147;$ geh&ouml;renden Felder violett umrandet, w&auml;hrend die Felder f&uuml;r $&#132;s&nbsp;>&nbsp;0&#147;$ gelb hinterlegt sind. Alle gesuchten Wahrscheinlichkeiten k&ouml;nnen hier mit Hilfe der klassischen Definition ermittelt werden.
+
In nebenstehender Grafik sind  
:<br><br><b>1.</b>&nbsp;&nbsp;Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet:
+
*die drei zum Ereignis&nbsp; $\big[x&nbsp;>&nbsp;0\big]$&nbsp; geh&ouml;renden Felder violett umrandet,  
 +
* die Felder f&uuml;r&nbsp; $\big[s&nbsp;>&nbsp;0\big]$&nbsp; gelb hinterlegt.  
 +
 
 +
 
 +
Alle gesuchten Wahrscheinlichkeiten k&ouml;nnen hier mit Hilfe der klassischen Definition ermittelt werden.
 +
<br><br>
 +
'''(1)'''&nbsp; Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet:
 
:$$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$
 
:$$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$
:<b>2.</b>&nbsp;&nbsp;Hier gilt folgender Sachverhalt:
+
 
$$\rm Pr((\it x > \rm 0) \cap (\it s>\rm 0) ) = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$
+
 
:<b>3.</b>&nbsp;&nbsp;Mit den Ergebnissen aus (a) und (b) folgt:
+
 
:$$\rm Pr(\it x > \rm 0 \hspace{0.05cm}| \hspace{0.05cm} \it s > \rm 0)  =  \frac{{\rm Pr} ((\it x > \rm 0) \cap (\it s > \rm 0))}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.$$
+
'''(2)'''&nbsp; Hier gilt folgender Sachverhalt:
:<b>4.</b>&nbsp;&nbsp;Analog zur Teilfrage (c) gilt nun:
+
:$$\rm Pr \big[(\it x > \rm 0) \cap (\it s>\rm 0) \big ] = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$
:$$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr((\it x > \rm 0) \cap (\it s > \rm 0))}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$
+
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Mit den Ergebnissen der Teilaufgaben&nbsp; '''(1)'''&nbsp; und&nbsp; '''(2)'''&nbsp; folgt:
 +
:$$\rm Pr \big[(\it x > \rm 0) \hspace{0.05cm}| \hspace{0.05cm} (\it s > \rm 0)\big] =  \frac{{\rm Pr} [(\it x > \rm 0) \cap (\it s > \rm 0)]}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(3)'''&nbsp; gilt nun:
 +
:$$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr \big[(\it x > \rm 0) \cap (\it s > \rm 0) \big]}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu Stochastische Signaltheorie|^1.3 Statistische Abhängigkeit und Unabhängigkeit
+
[[Category:Aufgaben zu Stochastische Signaltheorie|^1.3 Statistische (Un-)Abhängigkeit^]]
^]]
 

Aktuelle Version vom 30. November 2021, 15:42 Uhr

Summe zweier Ternärgrößen  $x$  und  $y$

Gegeben seien die ternären Zufallsgrößen

$$x ∈ {–2, \ 0, +2},$$
$$y ∈ {–1, \ 0, +1}.$$
  • Diese beiden Ternärwerte treten jeweils mit gleicher Wahrscheinlichkeit auf. 
  • Daraus wird als eine neue Zufallsgröße die Summe  $s = x + y$  gebildet.
  • Das nebenstehendes Schema zeigt,  dass die Summe  $s$  alle ganzzahligen Werte zwischen  $–3$  und  $+3$  annehmen kann: 
$$ s \in \{-3, -2, -1, \ 0, +1, +2, +3\}.$$



Hinweise:

  • Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo 
Statistische Abhängigkeit und Unabhängigkeit.


Fragebogen

1

Berechnen Sie die Wahrscheinlichkeit,  dass die Summe  $s$  positv ist:

${\rm Pr}(s>0) \ = \ $

2

Berechnen Sie die Wahrscheinlichkeit,  dass sowohl die Eingangsgröße  $x$  als auch die Summe  $s$  positiv sind:

${\rm Pr}\big [(x>0) \cap (s>0)\big] \ = \ $

3

Berechnen Sie die bedingte Wahrscheinlichkeit,  dass die Eingangsgröße  $x > 0$  ist, wenn  $s > 0$  gilt:

${\rm Pr}(x>0\hspace{0.05cm}|\hspace{0.05cm}s>0)\ = \ $

4

Berechnen Sie die bedingte Wahrscheinlichkeit,  dass die Summe  $s$  positiv ist,  wenn die Eingangsgröße  $x > 0$  ist:

${\rm Pr}(s>0\hspace{0.05cm}|\hspace{0.05cm}x>0)\ = \ $


Musterlösung

Ternärgrößen im Venndiagramm

In nebenstehender Grafik sind

  • die drei zum Ereignis  $\big[x > 0\big]$  gehörenden Felder violett umrandet,
  • die Felder für  $\big[s > 0\big]$  gelb hinterlegt.


Alle gesuchten Wahrscheinlichkeiten können hier mit Hilfe der klassischen Definition ermittelt werden.

(1)  Dieses Ereignis ist durch die gelb hinterlegten Felder gekennzeichnet:

$$\rm Pr (\it s > \rm 0) = \rm 4/9 \hspace{0.15cm}\underline { \approx \rm 0.444}.$$


(2)  Hier gilt folgender Sachverhalt:

$$\rm Pr \big[(\it x > \rm 0) \cap (\it s>\rm 0) \big ] = \rm Pr(\it x > \rm 0) =\rm 3/9\hspace{0.15cm}\underline { \approx \rm 0.333}. $$


(3)  Mit den Ergebnissen der Teilaufgaben  (1)  und  (2)  folgt:

$$\rm Pr \big[(\it x > \rm 0) \hspace{0.05cm}| \hspace{0.05cm} (\it s > \rm 0)\big] = \frac{{\rm Pr} [(\it x > \rm 0) \cap (\it s > \rm 0)]}{{\rm Pr}(\it s > \rm 0)}= \frac{3/9}{4/9}\hspace{0.15cm}\underline {= 0.75}.$$


(4)  Analog zur Teilaufgabe  (3)  gilt nun:

$$\rm Pr(\it s > \rm 0 \hspace{0.05cm} | \hspace{0.05cm} \it x > \rm 0)=\frac{Pr \big[(\it x > \rm 0) \cap (\it s > \rm 0) \big]}{Pr(\it x >\rm 0)}=\rm \frac{3/9}{3/9}\hspace{0.15cm}\underline {= 1}.$$