Aufgaben:Aufgabe 3.11Z: Extrem unsymmetrischer Kanal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Informationstheorie/Anwendung auf die Digitalsignalübertragung }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multi…“)
 
 
(17 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:|right|]]
+
[[Datei:P_ID2800__Inf_Z_3_10.png|right|frame|Einseitig verfälschender Kanal]]
 +
Betrachtet wird der nebenstehend gezeichnete Kanal mit den folgenden Eigenschaften:
 +
* Das Symbol&nbsp; $X = 0$&nbsp; wird immer richtig übertragen und führt stets zum Ergebnis&nbsp; $Y = 0$.
 +
* Das Symbol&nbsp; $X = 1$&nbsp; wird maximal verfälscht.&nbsp;
 +
 
 +
 
 +
Aus Sicht der Informationstheorie bedeutet dies:
 +
:$${\rm Pr}(Y \hspace{-0.05cm} = 0\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) ={\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) = 0.5 \hspace{0.05cm}.$$
 +
Zu bestimmen sind in dieser Aufgabe:
 +
* die Transinformation&nbsp; $I(X; Y)$&nbsp; für&nbsp; $P_X(0) = p_0 = 0.4$&nbsp; und&nbsp; $P_X(1) = p_1 = 0.6$.&nbsp; <br>Es gilt allgemein:
 +
:$$ I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y)\hspace{0.05cm}=\hspace{0.05cm}H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm} =\hspace{0.05cm} H(X) + H(Y)- H(XY)\hspace{0.05cm},$$
 +
* die Kanalkapazität:
 +
:$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung|Anwendung auf die Digitalsignalübertragung]].
 +
*Bezug genommen wird insbesondere auf die Seite&nbsp;    [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Kanalkapazit.C3.A4t_eines_Bin.C3.A4rkanals|Kanalkapazität eines Binärkanals]].
 +
*In der&nbsp; [[Aufgaben:3.14_Kanalcodierungstheorem|Aufgabe 3.14]]&nbsp; sollen die hier gefundenen Ergebnisse im Vergleich zum BSC–Kanal interpretiert werden.
 +
  
  
Zeile 9: Zeile 34:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
 
|type="[]"}
 
- Falsch
 
+ Richtig
 
  
 +
{Berechnen Sie die Quellenentropie allgemein und für&nbsp; $\underline{p_0 = 0.4}$.
 +
|type="{}"}
 +
$H(X) \ = \ $ { 0.971 3% } $\ \rm bit$
 +
 +
{Berechnen Sie die Sinkenentropie allgemein und für&nbsp; $p_0 = 0.4$.
 +
|type="{}"}
 +
$H(Y) \ = \ $ { 0.881 3% }  $\ \rm bit$
 +
 +
{Berechnen Sie die Verbundentropie allgemein und für&nbsp; $p_0 = 0.4$.
 +
|type="{}"}
 +
$H(XY) \ = \ $ { 1.571 3% } $\ \rm bit$ 
 +
 +
{Berechnen Sie die Transinformation allgemein und für&nbsp; $p_0 = 0.4$.
 +
|type="{}"}
 +
$I(X; Y) \ = \ $ { 0.281 3% } $\ \rm bit$
  
{Input-Box Frage
+
{Welche Wahrscheinlichkeit&nbsp; $p_0^{(*)}$&nbsp; führt zur Kanalkapazität&nbsp; $C$?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$p_0^{(*)}  \ = \ $ { 0.6 3% }  
  
 +
{Wie groß ist die Kanalkapazität des vorliegenden Kanals?
 +
|type="{}"}
 +
$C  \ = \ $ { 0.322 3% }  $\ \rm bit$
  
 +
{Wie groß sind die bedingten Entropien mit&nbsp; $p_0 = p_0^{(*)}$&nbsp; gemäß Teilaufgabe&nbsp; '''(5)'''?
 +
|type="{}"}
 +
$H(X|Y) \ = \ $ { 0.649 3% }  $\ \rm bit$
 +
$H(Y|X) \ = \ $ { 0.4 3% } $\ \rm bit$
  
 
</quiz>
 
</quiz>
 +
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp; Die Quellenentropie ergibt sich entsprechend der binären Entropiefunktion:
'''2.'''
+
:$$H(X) = H_{\rm bin}(p_0)= H_{\rm bin}(0.4) \hspace{0.15cm} \underline {=0.971\,{\rm bit}} \hspace{0.05cm}.$$
'''3.'''
+
 
'''4.'''
+
 
'''5.'''
+
 
'''6.'''
+
'''(2)'''&nbsp; Die Wahrscheinlichkeiten der Sinkensymbole sind:
'''7.'''
+
:$$P_Y(1) = p_1/2 = (1 - p_0)/2 = 0.3\hspace{0.05cm},\hspace{0.2cm} P_Y(0) = 1-P_Y(1) = p_1/2 = (1 - p_0)/2 = 0.7$$
 +
:$$\Rightarrow \hspace{0.3cm} H(Y) = H_{\rm bin}(\frac{1+p_0}{2})= H_{\rm bin}(0.7) \hspace{0.15cm} \underline {=0.881\,{\rm bit}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Die Verbundwahrscheinlichkeiten &nbsp;$p_{μκ} = {\rm Pr}\big[(X = μ) ∩ (Y = κ)\big]&nbsp;$ ergeben sich zu:
 +
:$$ p_{00} = p_0 \hspace{0.05cm},\hspace{0.3cm} p_{01} = 0 \hspace{0.05cm},\hspace{0.3cm} p_{10} = (1 - p_0)/2 \hspace{0.05cm},\hspace{0.3cm} p_{11} = (1 - p_0)/2$$
 +
:$$\Rightarrow \hspace{0.3cm} H(XY) =p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ p_0} + 2 \cdot \frac{1-p_0}{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{ 1- p_0} = p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ p_0} + (1-p_0) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ 1- p_0} + (1-p_0) \cdot {\rm log}_2 \hspace{0.1cm} (2)$$
 +
:$$\Rightarrow \hspace{0.3cm}H(XY) =H_{\rm bin}(p_0) + 1 - p_0 \hspace{0.05cm}.$$
 +
*Das numerische Ergebnis für&nbsp; $p_0 = 0.4$&nbsp; lautet somit:
 +
:$$H(XY) = H_{\rm bin}(0.4) + 0.6 = 0.971 + 0.6 \hspace{0.15cm} \underline {=1.571\,{\rm bit}} \hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Eine (mögliche) Gleichung zur Berechnung der Transinformation lautet:
 +
:$$ I(X;Y) = H(X) + H(Y)- H(XY)\hspace{0.05cm}.$$
 +
*Daraus erhält man mit den Ergebnissen der ersten drei Teilaufgaben:
 +
:$$I(X;Y) = H_{\rm bin}(p_0) + H_{\rm bin}(\frac{1+p_0}{2}) - H_{\rm bin}(p_0) -1 + p_0 = H_{\rm bin}(\frac{1+p_0}{2}) -1 + p_0.$$
 +
:$$ \Rightarrow \hspace{0.3cm} p_0 = 0.4 {\rm :}\hspace{0.5cm} I(X;Y) = H_{\rm bin}(0.7) - 0.6 = 0.881 - 0.6 \hspace{0.15cm} \underline {=0.281\,{\rm bit}}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Die Kanalkapazität&nbsp; $C$&nbsp; ist die Transinformation &nbsp;$I(X; Y)$&nbsp; bei bestmöglichen Wahrscheinlichkeiten &nbsp;$p_0$&nbsp;  und &nbsp; $p_1$&nbsp;  der Quellensymbole.
 +
*Nach Differentiation erhält man die Bestimmungsgleichung:
 +
:$$\frac{\rm d}{{\rm d}p_0} \hspace{0.1cm} I(X;Y) =
 +
\frac{\rm d}{{\rm d}p_0} \hspace{0.1cm}  H_{\rm bin}(\frac{1+p_0}{2}) +1 \stackrel{!}{=} 0
 +
\hspace{0.05cm}.$$
 +
*Mit dem Differentialquotienten der binären Entropiefunktion
 +
:$$ \frac{\rm d}{{\rm d}p} \hspace{0.1cm}  H_{\rm bin}(p) = {\rm log}_2 \hspace{0.1cm} \frac{1-p}{ p} \hspace{0.05cm},$$
 +
:und entsprechendes Nachdifferenzieren erhält man:
 +
:$${1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{(1-p_0)/2}{1- (1-p_0)/2} +1 \stackrel{!}{=} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{(1-p_0)/2}{(1+p_0)/2} +1 \stackrel{!}{=} 0$$
 +
:$$ \Rightarrow \hspace{0.3cm} {\rm log}_2 \hspace{0.1cm} \frac{1+p_0}{1-p_0} \stackrel{!}{=} 2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{1+p_0}{1-p_0} \stackrel{!}{=} 4 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_0 \hspace{0.15cm} \underline {=0.6}=p_0^{(*)}\hspace{0.05cm}.$$
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; Für die Kanalkapazität gilt dementsprechend:
 +
:$$C = I(X;Y) \big |_{p_0 \hspace{0.05cm}=\hspace{0.05cm} 0.6} = H_{\rm bin}(0.8) - 0.4 = 0.722 -0.4 \hspace{0.15cm} \underline {=0.322\,{\rm bit}}\hspace{0.05cm}.$$
 +
*In der Aufgabe A3.14 wird dieses Ergebnis im Vergleich zum BSC–Kanalmodell interpretiert.
 +
 
 +
 
 +
 
 +
 
 +
'''(7)'''&nbsp; Für die Äquivokation gilt:
 +
:$$ H(X \hspace{-0.1cm}\mid \hspace{-0.1cm}Y) = H(X) - I(X;Y) = 0.971 -0.322 \hspace{0.15cm} \underline {=0.649\,{\rm bit}}\hspace{0.05cm}.$$
 +
*Wegen&nbsp; $H_{\rm bin}(0.4) = H_{\rm bin}(0.6)$&nbsp; ergibt sich die gleiche Quellenentropie&nbsp; $H(X)$&nbsp; wie in Teilaufgabe&nbsp; '''(1)'''.
 +
*Die Sinkenentropie muss neu berechnet werden.&nbsp; Mit&nbsp; $p_0 = 0.6$&nbsp; erhält man&nbsp; $H(Y) = H_{\rm bin}(0.8) = 0.722\ \rm  bit$.
 +
* Damit ergibt sich für die Irrelevanz:
 +
:$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(Y) - I(X;Y) = 0.722 -0.322 \hspace{0.15cm} \underline {=0.400\,{\rm bit}}\hspace{0.05cm}.$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Informationstheorie|^3.3 Anwendung auf die Digitalsignalübertragung^]]
+
[[Category:Aufgaben zu  Informationstheorie|^3.3 Anwendung auf DSÜ-Kanäle^]]

Aktuelle Version vom 22. September 2021, 13:04 Uhr

Einseitig verfälschender Kanal

Betrachtet wird der nebenstehend gezeichnete Kanal mit den folgenden Eigenschaften:

  • Das Symbol  $X = 0$  wird immer richtig übertragen und führt stets zum Ergebnis  $Y = 0$.
  • Das Symbol  $X = 1$  wird maximal verfälscht. 


Aus Sicht der Informationstheorie bedeutet dies:

$${\rm Pr}(Y \hspace{-0.05cm} = 0\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) ={\rm Pr}(Y \hspace{-0.05cm} = 1\hspace{-0.05cm}\mid \hspace{-0.05cm} X \hspace{-0.05cm}= 1) = 0.5 \hspace{0.05cm}.$$

Zu bestimmen sind in dieser Aufgabe:

  • die Transinformation  $I(X; Y)$  für  $P_X(0) = p_0 = 0.4$  und  $P_X(1) = p_1 = 0.6$. 
    Es gilt allgemein:
$$ I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y)\hspace{0.05cm}=\hspace{0.05cm}H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)\hspace{0.05cm} =\hspace{0.05cm} H(X) + H(Y)- H(XY)\hspace{0.05cm},$$
  • die Kanalkapazität:
$$ C = \max_{P_X(X)} \hspace{0.15cm} I(X;Y) \hspace{0.05cm}.$$





Hinweise:


Fragebogen

1

Berechnen Sie die Quellenentropie allgemein und für  $\underline{p_0 = 0.4}$.

$H(X) \ = \ $

$\ \rm bit$

2

Berechnen Sie die Sinkenentropie allgemein und für  $p_0 = 0.4$.

$H(Y) \ = \ $

$\ \rm bit$

3

Berechnen Sie die Verbundentropie allgemein und für  $p_0 = 0.4$.

$H(XY) \ = \ $

$\ \rm bit$

4

Berechnen Sie die Transinformation allgemein und für  $p_0 = 0.4$.

$I(X; Y) \ = \ $

$\ \rm bit$

5

Welche Wahrscheinlichkeit  $p_0^{(*)}$  führt zur Kanalkapazität  $C$?

$p_0^{(*)} \ = \ $

6

Wie groß ist die Kanalkapazität des vorliegenden Kanals?

$C \ = \ $

$\ \rm bit$

7

Wie groß sind die bedingten Entropien mit  $p_0 = p_0^{(*)}$  gemäß Teilaufgabe  (5)?

$H(X|Y) \ = \ $

$\ \rm bit$
$H(Y|X) \ = \ $

$\ \rm bit$


Musterlösung

(1)  Die Quellenentropie ergibt sich entsprechend der binären Entropiefunktion:

$$H(X) = H_{\rm bin}(p_0)= H_{\rm bin}(0.4) \hspace{0.15cm} \underline {=0.971\,{\rm bit}} \hspace{0.05cm}.$$


(2)  Die Wahrscheinlichkeiten der Sinkensymbole sind:

$$P_Y(1) = p_1/2 = (1 - p_0)/2 = 0.3\hspace{0.05cm},\hspace{0.2cm} P_Y(0) = 1-P_Y(1) = p_1/2 = (1 - p_0)/2 = 0.7$$
$$\Rightarrow \hspace{0.3cm} H(Y) = H_{\rm bin}(\frac{1+p_0}{2})= H_{\rm bin}(0.7) \hspace{0.15cm} \underline {=0.881\,{\rm bit}} \hspace{0.05cm}.$$


(3)  Die Verbundwahrscheinlichkeiten  $p_{μκ} = {\rm Pr}\big[(X = μ) ∩ (Y = κ)\big] $ ergeben sich zu:

$$ p_{00} = p_0 \hspace{0.05cm},\hspace{0.3cm} p_{01} = 0 \hspace{0.05cm},\hspace{0.3cm} p_{10} = (1 - p_0)/2 \hspace{0.05cm},\hspace{0.3cm} p_{11} = (1 - p_0)/2$$
$$\Rightarrow \hspace{0.3cm} H(XY) =p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ p_0} + 2 \cdot \frac{1-p_0}{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{2}{ 1- p_0} = p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ p_0} + (1-p_0) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{ 1- p_0} + (1-p_0) \cdot {\rm log}_2 \hspace{0.1cm} (2)$$
$$\Rightarrow \hspace{0.3cm}H(XY) =H_{\rm bin}(p_0) + 1 - p_0 \hspace{0.05cm}.$$
  • Das numerische Ergebnis für  $p_0 = 0.4$  lautet somit:
$$H(XY) = H_{\rm bin}(0.4) + 0.6 = 0.971 + 0.6 \hspace{0.15cm} \underline {=1.571\,{\rm bit}} \hspace{0.05cm}.$$


(4)  Eine (mögliche) Gleichung zur Berechnung der Transinformation lautet:

$$ I(X;Y) = H(X) + H(Y)- H(XY)\hspace{0.05cm}.$$
  • Daraus erhält man mit den Ergebnissen der ersten drei Teilaufgaben:
$$I(X;Y) = H_{\rm bin}(p_0) + H_{\rm bin}(\frac{1+p_0}{2}) - H_{\rm bin}(p_0) -1 + p_0 = H_{\rm bin}(\frac{1+p_0}{2}) -1 + p_0.$$
$$ \Rightarrow \hspace{0.3cm} p_0 = 0.4 {\rm :}\hspace{0.5cm} I(X;Y) = H_{\rm bin}(0.7) - 0.6 = 0.881 - 0.6 \hspace{0.15cm} \underline {=0.281\,{\rm bit}}\hspace{0.05cm}.$$


(5)  Die Kanalkapazität  $C$  ist die Transinformation  $I(X; Y)$  bei bestmöglichen Wahrscheinlichkeiten  $p_0$  und   $p_1$  der Quellensymbole.

  • Nach Differentiation erhält man die Bestimmungsgleichung:
$$\frac{\rm d}{{\rm d}p_0} \hspace{0.1cm} I(X;Y) = \frac{\rm d}{{\rm d}p_0} \hspace{0.1cm} H_{\rm bin}(\frac{1+p_0}{2}) +1 \stackrel{!}{=} 0 \hspace{0.05cm}.$$
  • Mit dem Differentialquotienten der binären Entropiefunktion
$$ \frac{\rm d}{{\rm d}p} \hspace{0.1cm} H_{\rm bin}(p) = {\rm log}_2 \hspace{0.1cm} \frac{1-p}{ p} \hspace{0.05cm},$$
und entsprechendes Nachdifferenzieren erhält man:
$${1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{(1-p_0)/2}{1- (1-p_0)/2} +1 \stackrel{!}{=} 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {1}/{2} \cdot {\rm log}_2 \hspace{0.1cm} \frac{(1-p_0)/2}{(1+p_0)/2} +1 \stackrel{!}{=} 0$$
$$ \Rightarrow \hspace{0.3cm} {\rm log}_2 \hspace{0.1cm} \frac{1+p_0}{1-p_0} \stackrel{!}{=} 2 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{1+p_0}{1-p_0} \stackrel{!}{=} 4 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_0 \hspace{0.15cm} \underline {=0.6}=p_0^{(*)}\hspace{0.05cm}.$$


(6)  Für die Kanalkapazität gilt dementsprechend:

$$C = I(X;Y) \big |_{p_0 \hspace{0.05cm}=\hspace{0.05cm} 0.6} = H_{\rm bin}(0.8) - 0.4 = 0.722 -0.4 \hspace{0.15cm} \underline {=0.322\,{\rm bit}}\hspace{0.05cm}.$$
  • In der Aufgabe A3.14 wird dieses Ergebnis im Vergleich zum BSC–Kanalmodell interpretiert.



(7)  Für die Äquivokation gilt:

$$ H(X \hspace{-0.1cm}\mid \hspace{-0.1cm}Y) = H(X) - I(X;Y) = 0.971 -0.322 \hspace{0.15cm} \underline {=0.649\,{\rm bit}}\hspace{0.05cm}.$$
  • Wegen  $H_{\rm bin}(0.4) = H_{\rm bin}(0.6)$  ergibt sich die gleiche Quellenentropie  $H(X)$  wie in Teilaufgabe  (1).
  • Die Sinkenentropie muss neu berechnet werden.  Mit  $p_0 = 0.6$  erhält man  $H(Y) = H_{\rm bin}(0.8) = 0.722\ \rm bit$.
  • Damit ergibt sich für die Irrelevanz:
$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(Y) - I(X;Y) = 0.722 -0.322 \hspace{0.15cm} \underline {=0.400\,{\rm bit}}\hspace{0.05cm}.$$