Aufgaben:Aufgabe 3.1: Ortskurve bei Phasenmodulation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(13 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID1079__Mod_A_3_1.png|right|]]
+
[[Datei:P_ID1079__Mod_A_3_1.png|right|frame|Zwei Ortskurven zur Auswahl]]
Die Grafik zeigt Ortskurven am Ausgang zweier Modulatoren $M_1$ und $M_2$. Real- und Imaginärteil sind in dieser Grafik jeweils auf 1 V normiert.
+
Unter der Ortskurve versteht man allgemein die Darstellung des äquivalenten Tiefpass–Signals  $s_{\rm TP}(t)$  in der komplexen Ebene.
Unter der Ortskurve versteht man allgemein die Darstellung des äquivalenten Tiefpass–Signals $s_{TP}(t)$ in der komplexen Ebene.
+
*Die Grafik zeigt Ortskurven am Ausgang zweier Modulatoren  $\rm M_1$  und  $\rm M_2$.  
 +
*Real- und Imaginärteil sind in dieser Grafik jeweils auf $1 \ \rm V$ normiert.
  
  
 
Das Quellensignal sei bei beiden Modulatoren gleich:
 
Das Quellensignal sei bei beiden Modulatoren gleich:
$$ q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} \cdot t),\hspace{1cm}\\{\rm mit}\hspace{0.2cm} A_{\rm N} = 2\,{\rm V},\hspace{0.2cm}f_{\rm N} = 5\,{\rm kHz}\hspace{0.05cm}.$$
+
:$$ q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} \cdot t),\hspace{1cm}
 +
{\rm mit}\hspace{0.2cm} A_{\rm N} = 2\,{\rm V},\hspace{0.2cm}f_{\rm N} = 5\,{\rm kHz}\hspace{0.05cm}.$$
 
Einer der beiden Modulatoren realisiert eine Phasenmodulation, die durch folgende Gleichungen gekennzeichnet ist:
 
Einer der beiden Modulatoren realisiert eine Phasenmodulation, die durch folgende Gleichungen gekennzeichnet ist:
$$ s(t)  =  A_{\rm T} \cdot \cos \left(\omega_{\rm T} \cdot t + \phi(t) \right)\hspace{0.05cm},$$
+
:$$ s(t)  =  A_{\rm T} \cdot \cos \hspace{-0.1cm} \big[\omega_{\rm T} \cdot t + \phi(t) \big]\hspace{0.05cm},$$
$$ s_{\rm TP}(t)  =  A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm},$$
+
:$$ s_{\rm TP}(t)  =  A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm},$$
$$ \phi(t)  =  K_{\rm PM} \cdot q(t)\hspace{0.05cm}.$$
+
:$$ \phi(t)  =  K_{\rm PM} \cdot q(t)\hspace{0.05cm}.$$
Den Maximalwert von $ϕ(t)$ nennt man Modulationsindex $η$ – teilweise wird diese Größe in der Literatur auch als Phasenhub bezeichnet.
+
Den Maximalwert von  $ϕ(t)$  nennt man den  ''Modulationsindex''  $η$.  Oft wird  $η$  in der Literatur auch als  ''Phasenhub''  bezeichnet.
'''Hinweis:''' Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://www.lntwww.de/Modulationsverfahren/Phasenmodulation_(PM) Kapitel 3.1].  
+
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
''Hinweise:''  
 +
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Phasenmodulation_(PM)|Phasenmodulation]].
 +
*Bezug genommen wird insbesondere auf die Seite   [[Modulationsverfahren/Phasenmodulation_(PM)#.C3.84quivalentes_TP.E2.80.93Signal_bei_Phasenmodulation|Äquivalentes TP-Signal bei Phasenmodulation]].
 +
 +
 
  
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welches Modulationsverfahren verwendet der Modulator $M_1$?
+
{Welches Modulationsverfahren verwendet der Modulator &nbsp;$\rm M_1$?
|type="[]"}
+
|type="()"}
 
-  Zweiseitenband–Amplitudenmodulation.
 
-  Zweiseitenband–Amplitudenmodulation.
 
+ Einseitenband–Amplitudenmodulation.
 
+ Einseitenband–Amplitudenmodulation.
 
- Phasenmodulation.
 
- Phasenmodulation.
  
{Welches Modulationsverfahren verwendet der Modulator $M_2$?
+
{Welches Modulationsverfahren verwendet der Modulator &nbsp;$\rm M_2$?
|type="[]"}
+
|type="()"}
 
- Zweiseitenband–Amplitudenmodulation.
 
- Zweiseitenband–Amplitudenmodulation.
 
- Einseitenband–Amplitudenmodulation.
 
- Einseitenband–Amplitudenmodulation.
 
+ Phasenmodulation.
 
+ Phasenmodulation.
  
{Wie groß ist die Trägeramplitude $A_T$ beim Phasenmodulator? Beachten Sie die Normierung auf 1 V.
+
{Wie groß ist die Trägeramplitude &nbsp;$A_{\rm T}$&nbsp; beim Phasenmodulator?&nbsp; Beachten Sie die Normierung auf &nbsp;$1 \ \rm V$.
 
|type="{}"}
 
|type="{}"}
$A_T$ = { 1 3% } $V$  
+
$A_{\rm T} \ = \ $ { 1 3% } $\ \rm V$  
  
{Welche Werte besitzen der Modulationsindex und die Modulatorkonstante?
+
{Welche Werte besitzen der Modulationsindex &nbsp;$η$&nbsp; und die Modulatorkonstante &nbsp;$K_{\rm PM}$?
 
|type="{}"}
 
|type="{}"}
$η$ = { 3.1415 3% }  
+
\ = \ $  { 3.1415 3% }  
$K_{PM}$ = { 1.571 3% } $1/V$
+
$K_{\rm PM}\ = \ $ { 1.571 3% } $\ \rm 1/V$
  
{Beschreiben Sie die Bewegung auf der Ortskurve. Zu welcher Zeit $t_1$ wird zum ersten Mal wieder der Ausgangspunkt $s_{TP}(t = 0) = –1V$ erreicht?
+
{Beschreiben Sie die Bewegung auf der Ortskurve.&nbsp; Zu welcher Zeit &nbsp;$t_1$&nbsp; wird erstmals wieder der Ausgangspunkt &nbsp;$s_{\rm TP}(t = 0) = -1 \ \rm V$&nbsp; erreicht?
 
|type="{}"}
 
|type="{}"}
$t_1$ = { 100 3% } $μs$
+
$t_1\ = \ $ { 100 3% } $ \ \rm  &micro; s$
  
  
Zeile 50: Zeile 64:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Es handelt sich um eine ESB–AM mit dem Seitenband–zu–Träger–Verhältnis $μ = 1$ ⇒ Antwort 2. Bewegt man sich auf dem Kreis in mathematisch positive Richtung, so liegt speziell eine OSB–AM vor, andernfalls eine USB–AM.
+
'''(1)'''&nbsp; Es handelt sich um eine ESB–AM mit dem Seitenband–zu–Träger–Verhältnis&nbsp; $μ = 1$ &nbsp; &nbsp; <u>Antwort 2</u>:
 +
*Bewegt man sich auf dem Kreis in mathematisch positive Richtung, so liegt speziell eine OSB–AM vor, andernfalls eine USB–AM.
 +
*Die Phasenfunktion&nbsp; $ϕ(t)$&nbsp; als der Winkel eines Punktes&nbsp; $s_{\rm TP}(t)$&nbsp; auf dem Kreis(bogen) bezogen auf den Koordinatenursprung kann Werte zwischen&nbsp; $±π/2$&nbsp; annehmen und zeigt keinen Cosinusverlauf.
 +
*Aber auch die Hüllkurve&nbsp; $a(t) = |s_{\rm TP}(t)|$&nbsp; ist nicht cosinusförmig.
 +
*Würde man beim Empfänger für&nbsp; $\rm M_1$&nbsp; einen Hüllkurvendemodulator einsetzen, so käme es zu nichtlinearen Verzerrungen im Gegensatz zur ZSB–AM, deren Ortskurve eine horizontale Gerade ist.
 +
 
  
Die Phasenfunktion $ϕ(t)$ als der Winkel eines Punktes $s_{TP}(t)$ auf dem Kreis(bogen) bezogen auf den Koordinatenursprung kann Werte zwischen $±π/2$ annehmen und zeigt keinen Cosinusverlauf. Aber auch die Hüllkurve $a(t) = |s_{TP}(t)|$ ist nicht cosinusförmig. Würde man beim Empfänger für M1 einen Hüllkurvendemodulator einsetzen, so käme es zu nichtlinearen Verzerrungen im Gegensatz zur ZSB–AM, deren Ortskurve eine horizontale Gerade ist.
 
  
  
'''2.'''Hier handelt es sich um die Phasenmodulation ⇒ Antwort 3. Die Einhüllende $a(t) = A_T$ ist konstant, während die Phase $ϕ(t)$ entsprechend dem Quellensignal cosinusförmig verläuft.
+
'''(2)'''&nbsp; Hier handelt es sich um die Phasenmodulation &nbsp; &nbsp; <u>Antwort 3</u>:
 +
*Die Einhüllende&nbsp; $a(t) = A_{\rm T}$&nbsp; ist konstant,  
 +
*während die Phase&nbsp; $ϕ(t)$&nbsp; entsprechend dem Quellensignal&nbsp; $q(t)$&nbsp; cosinusförmig verläuft.
  
'''3.''' Bei der Phasenmodulation gilt
 
$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm}.$$
 
Aus der Grafik kann man die Trägeramplitude $A_T = 1 V$ als den Kreisradius ablesen.
 
  
  
'''4.'''Das Quellensignal $q(t)$ ist zum Zeitpunkt $t = 0$ maximal und damit auch die Phasenfunktion:
+
 
$$ \eta = \phi_{\rm max} = \phi( t =0)\hspace{0.15cm}\underline { = \pi} \hspace{0.05cm}.$$
+
'''(3)'''&nbsp; Bei der Phasenmodulation gilt:
Daraus erhält man für die Modulatorkonstante:
+
:$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm}.$$
 +
*Aus der Grafik kann man die Trägeramplitude&nbsp; $A_{\rm T}\hspace{0.15cm}\underline{ = 1 \ \rm V}$&nbsp; als den Kreisradius ablesen.
 +
 
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Das Quellensignal&nbsp; $q(t)$&nbsp; ist zum Zeitpunkt&nbsp; $t = 0$&nbsp; maximal und damit auch die Phasenfunktion:
 +
:$$ \eta = \phi_{\rm max} = \phi( t =0) = \pi\hspace{0.15cm}\underline { = 3.1415} \hspace{0.05cm}.$$
 +
*Daraus erhält man für die Modulatorkonstante:
 
$$K_{\rm PM} = \frac{\eta}{A_{\rm N}} = \frac{\pi}{2\,{\rm V}}\hspace{0.15cm}\underline {= 1.571\,{\rm V}^{-1}}\hspace{0.05cm}.$$
 
$$K_{\rm PM} = \frac{\eta}{A_{\rm N}} = \frac{\pi}{2\,{\rm V}}\hspace{0.15cm}\underline {= 1.571\,{\rm V}^{-1}}\hspace{0.05cm}.$$
  
'''5.'''Man bewegt sich auf dem Kreis(bogen) im Uhrzeigersinn. Nach einem Viertel der Periodendauer $T_N = 1/f_N = 200 μs$ ist $ϕ(t) = 0$ und $s_{TP}(t) = 1 V$. Zur Zeit $t_1 = T_N/2 = 100 μs$ gilt $ϕ(t_1) = –π$ und $s_{TP}(t_1) = –1 V$. Danach bewegt man sich auf dem Kreisbogen entgegen dem Uhrzeigersinn.
+
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Man bewegt sich auf dem Kreis(bogen) im Uhrzeigersinn.  
 +
*Nach einem Viertel der Periodendauer &nbsp;$T_{\rm N} = 1/f_{\rm N}  = 200 \ \rm &micro; s$&nbsp; ist &nbsp;$ϕ(t) = 0$&nbsp; und &nbsp;$s_{\rm TP}(t) = 1 \, \rm V$.  
 +
*Zur Zeit &nbsp;$t_1 = T_{\rm N}/2\hspace{0.15cm}\underline { = 100 \ \rm &micro; s}$&nbsp; gilt &nbsp;$ϕ(t_1) = $&nbsp; und &nbsp;$s_{\rm TP}(t_1) = -1 \, \rm V$.  
 +
*Danach bewegt man sich auf dem Kreisbogen entgegen dem Uhrzeigersinn.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 24. März 2020, 16:48 Uhr

Zwei Ortskurven zur Auswahl

Unter der Ortskurve versteht man allgemein die Darstellung des äquivalenten Tiefpass–Signals  $s_{\rm TP}(t)$  in der komplexen Ebene.

  • Die Grafik zeigt Ortskurven am Ausgang zweier Modulatoren  $\rm M_1$  und  $\rm M_2$.
  • Real- und Imaginärteil sind in dieser Grafik jeweils auf $1 \ \rm V$ normiert.


Das Quellensignal sei bei beiden Modulatoren gleich:

$$ q(t) = A_{\rm N} \cdot \cos(2 \pi f_{\rm N} \cdot t),\hspace{1cm} {\rm mit}\hspace{0.2cm} A_{\rm N} = 2\,{\rm V},\hspace{0.2cm}f_{\rm N} = 5\,{\rm kHz}\hspace{0.05cm}.$$

Einer der beiden Modulatoren realisiert eine Phasenmodulation, die durch folgende Gleichungen gekennzeichnet ist:

$$ s(t) = A_{\rm T} \cdot \cos \hspace{-0.1cm} \big[\omega_{\rm T} \cdot t + \phi(t) \big]\hspace{0.05cm},$$
$$ s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm},$$
$$ \phi(t) = K_{\rm PM} \cdot q(t)\hspace{0.05cm}.$$

Den Maximalwert von  $ϕ(t)$  nennt man den  Modulationsindex  $η$.  Oft wird  $η$  in der Literatur auch als  Phasenhub  bezeichnet.





Hinweise:


Fragebogen

1

Welches Modulationsverfahren verwendet der Modulator  $\rm M_1$?

Zweiseitenband–Amplitudenmodulation.
Einseitenband–Amplitudenmodulation.
Phasenmodulation.

2

Welches Modulationsverfahren verwendet der Modulator  $\rm M_2$?

Zweiseitenband–Amplitudenmodulation.
Einseitenband–Amplitudenmodulation.
Phasenmodulation.

3

Wie groß ist die Trägeramplitude  $A_{\rm T}$  beim Phasenmodulator?  Beachten Sie die Normierung auf  $1 \ \rm V$.

$A_{\rm T} \ = \ $

$\ \rm V$

4

Welche Werte besitzen der Modulationsindex  $η$  und die Modulatorkonstante  $K_{\rm PM}$?

$η\ = \ $

$K_{\rm PM}\ = \ $

$\ \rm 1/V$

5

Beschreiben Sie die Bewegung auf der Ortskurve.  Zu welcher Zeit  $t_1$  wird erstmals wieder der Ausgangspunkt  $s_{\rm TP}(t = 0) = -1 \ \rm V$  erreicht?

$t_1\ = \ $

$ \ \rm µ s$


Musterlösung

(1)  Es handelt sich um eine ESB–AM mit dem Seitenband–zu–Träger–Verhältnis  $μ = 1$   ⇒   Antwort 2:

  • Bewegt man sich auf dem Kreis in mathematisch positive Richtung, so liegt speziell eine OSB–AM vor, andernfalls eine USB–AM.
  • Die Phasenfunktion  $ϕ(t)$  als der Winkel eines Punktes  $s_{\rm TP}(t)$  auf dem Kreis(bogen) bezogen auf den Koordinatenursprung kann Werte zwischen  $±π/2$  annehmen und zeigt keinen Cosinusverlauf.
  • Aber auch die Hüllkurve  $a(t) = |s_{\rm TP}(t)|$  ist nicht cosinusförmig.
  • Würde man beim Empfänger für  $\rm M_1$  einen Hüllkurvendemodulator einsetzen, so käme es zu nichtlinearen Verzerrungen im Gegensatz zur ZSB–AM, deren Ortskurve eine horizontale Gerade ist.



(2)  Hier handelt es sich um die Phasenmodulation   ⇒   Antwort 3:

  • Die Einhüllende  $a(t) = A_{\rm T}$  ist konstant,
  • während die Phase  $ϕ(t)$  entsprechend dem Quellensignal  $q(t)$  cosinusförmig verläuft.



(3)  Bei der Phasenmodulation gilt:

$$s_{\rm TP}(t) = A_{\rm T} \cdot {\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\phi(t) }\hspace{0.05cm}.$$
  • Aus der Grafik kann man die Trägeramplitude  $A_{\rm T}\hspace{0.15cm}\underline{ = 1 \ \rm V}$  als den Kreisradius ablesen.



(4)  Das Quellensignal  $q(t)$  ist zum Zeitpunkt  $t = 0$  maximal und damit auch die Phasenfunktion:

$$ \eta = \phi_{\rm max} = \phi( t =0) = \pi\hspace{0.15cm}\underline { = 3.1415} \hspace{0.05cm}.$$
  • Daraus erhält man für die Modulatorkonstante:

$$K_{\rm PM} = \frac{\eta}{A_{\rm N}} = \frac{\pi}{2\,{\rm V}}\hspace{0.15cm}\underline {= 1.571\,{\rm V}^{-1}}\hspace{0.05cm}.$$



(5)  Man bewegt sich auf dem Kreis(bogen) im Uhrzeigersinn.

  • Nach einem Viertel der Periodendauer  $T_{\rm N} = 1/f_{\rm N} = 200 \ \rm µ s$  ist  $ϕ(t) = 0$  und  $s_{\rm TP}(t) = 1 \, \rm V$.
  • Zur Zeit  $t_1 = T_{\rm N}/2\hspace{0.15cm}\underline { = 100 \ \rm µ s}$  gilt  $ϕ(t_1) = -π$  und  $s_{\rm TP}(t_1) = -1 \, \rm V$.
  • Danach bewegt man sich auf dem Kreisbogen entgegen dem Uhrzeigersinn.