Digitalsignalübertragung/Fehlerwahrscheinlichkeit bei Basisbandübertragung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(34 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
 
|Nächste Seite=Eigenschaften von Nyquistsystemen
 
|Nächste Seite=Eigenschaften von Nyquistsystemen
 
}}
 
}}
 
  
 
== Definition der Bitfehlerwahrscheinlichkeit ==
 
== Definition der Bitfehlerwahrscheinlichkeit ==
 
<br>
 
<br>
 +
[[Datei:P_ID1258__Dig_T_1_2_S1_v1.png|right|frame|Zur Definition der Bitfehlerwahrscheinlichkeit]]
 +
Die Grafik zeigt ein sehr einfaches,&nbsp; aber allgemeingültiges Modell eines binären Übertragungssystems.&nbsp; Dieses lässt sich wie folgt charakterisieren:
 +
*Quelle und Sinke werden durch die beiden Binärfolgen &nbsp;$〈q_ν〉$&nbsp; und &nbsp;$〈v_ν〉$&nbsp; beschrieben.
 +
*Das gesamte Übertragungsystem,&nbsp; bestehend aus
 +
#Sender,
 +
#Übertragungskanal inklusive Störungen und
 +
#Empfänger,
 +
 +
 +
wird als &bdquo;Black Box&rdquo; mit binärem Eingang und binärem Ausgang betrachtet.
 +
*Dieser &bdquo;Digitale Kanal&rdquo; wird allein durch die Fehlerfolge $〈e_ν〉$ charakterisiert.
 +
*Bei fehlerfreier Übertragung des $\nu$&ndash;ten Bits &nbsp;$(v_ν = q_ν)$&nbsp; gilt &nbsp;$e_ν= 0$, <br>andernfalls  &nbsp;$(v_ν \ne q_ν)$&nbsp; wird &nbsp;$e_ν= 1$&nbsp; gesetzt.
 +
<br clear=all>
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Die&nbsp; (mittlere)&nbsp; '''Bitfehlerwahrscheinlichkeit'''&nbsp; ist bei einem Binärsystem wie folgt gegeben:
 +
 +
:$$p_{\rm B} = {\rm E}\big[{\rm Pr}(v_{\nu} \ne q_{\nu})\big]= \overline{  {\rm Pr}(v_{\nu} \ne q_{\nu}) } =
 +
\lim_{N \to\infty}\frac{1}{N}\cdot\sum\limits_{\nu=1}^{N}{\rm Pr}(v_{\nu}
 +
\ne q_{\nu})\hspace{0.05cm}.$$
 +
Diese statistische Größe ist das wichtigste Beurteilungskriterium eines jeden Digitalsystems.}}<br>
  
Die Grafik zeigt ein sehr einfaches, aber allgemeingültiges Modell eines binären Übertragungssystems. <br><br>
+
*Die Berechnung als Erwartungswert &nbsp;$\rm E[\text{...}]$&nbsp; gemäß dem ersten Teil der obigen Gleichung entspricht einer Scharmittelung über die Verfälschungswahrscheinlichkeit &nbsp;${\rm Pr}(v_{\nu} \ne q_{\nu})$&nbsp; des &nbsp;$\nu$&ndash;ten Symbols,&nbsp; während die überstreichende Linie im rechten Gleichungsteil eine Zeitmittelung kennzeichnet.  
[[Datei:P_ID1258__Dig_T_1_2_S1_v1.png|Zur Definition der Bitfehlerwahrscheinlichkeit|class=fit]]<br><br>
 
Dieses lässt sich wie folgt charakterisieren:
 
*Die Quelle und die Sinke werden durch die beiden Binärfolgen &#9001;<i>q<sub>&nu;</sub></i>&#9002; und &#9001;<i>&upsilon;<sub>&nu;</sub></i>&#9002; beschrieben.
 
*Das gesamte Übertragungsystem &ndash; bestehend aus Sender, Übertragungskanal inklusive Störungen und Empfänger &ndash; wird als &bdquo;Black Box&rdquo; mit binärem Ein&ndash; und Ausgang betrachtet.
 
*Dieser &bdquo;Digitale Kanal&rdquo; wird allein durch die Fehlerfolge &#9001;<i>e<sub>&nu;</sub></i>&#9002; charakterisiert. Bei fehlerfreier Übertragung des <i>&nu;</i>&ndash;ten Bits (<i>&upsilon;<sub>&nu;</sub></i> = <i>q<sub>&nu;</sub></i>) gilt <i>e<sub>&nu;</sub></i> = 0, andernfalls (<i>&upsilon;<sub>&nu;</sub></i> &ne<i>q<sub>&nu;</sub></i>) wird <i>e<sub>&nu;</sub></i> = 1 gesetzt.<br><br>
 
  
{{Definition}}''':''' Die (mittlere) Bitfehlerwahrscheinlichkeit ist bei einem Binärsystem wie folgt gegeben::
+
*Beide Berechnungsarten führen &ndash; unter der gerechtfertigten Annahme ergodischer Prozesse &ndash; zum gleichen Ergebnis,&nbsp; wie im vierten Hauptkapitel&nbsp;  &bdquo;Zufallsgrößen mit statistischen Bindungen&rdquo;&nbsp; des Buches &nbsp;[[Stochastische Signaltheorie]]&nbsp; gezeigt wurde.
<math>\it p_{\rm B} = \rm E[\rm Pr(\it v_{\nu} \ne q_{\nu})]= \overline {\rm Pr(\it v_{\nu} \ne q_{\nu})} =
 
\lim_{{\it N}\to\infty}\frac{\rm 1}{\it
 
N}\cdot\sum\limits_{\it \nu=\rm 1}^{\it N}\rm \rm Pr(\it v_{\nu}
 
\ne q_{\nu})\hspace{0.05cm}.</math>
 
<br>Diese statistische Größe ist das wichtigste Beurteilungskriterium eines jeden Digitalsystems.{{end}}<br><br>
 
Die Berechnung als Erwartungswert E[…..] gemäß dem ersten Teil der obigen Gleichung entspricht einer Scharmittelung über die Verfälschungswahrscheinlichkeit Pr(<i>&upsilon;<sub>&nu;</sub></i> &ne;  <i>q<sub>&nu;</sub></i>) des <i>&nu;</i>&ndash;ten Symbols, während die überstreichende Linie im rechten Teil eine Zeitmittelung  kennzeichnet. Beide Berechnungsarten führen &ndash; unter der gerechtfertigten Annahme ergodischer Prozesse &ndash; zum gleichen Ergebnis, wie im Kapitel 4 des Buches &bdquo;Stochastische Signaltheorie&rdquo; gezeigt wurde.
 
  
Auch aus der Fehlerfolge &#9001;<i>e<sub>&nu;</sub></i>&#9002; lässt sich die Bitfehlerwahrscheinlichkeit als Erwartungswert bestimmen, wobei zu berücksichtigen ist, dass <i>e<sub>&nu;</sub></i> nur die Werte 0 und 1 annehmen kann::
+
*Auch aus der Fehlerfolge &nbsp;$〈e_ν〉$&nbsp; lässt sich die Bitfehlerwahrscheinlichkeit als Erwartungswert bestimmen,&nbsp; wobei zu berücksichtigen ist,&nbsp; dass die Fehlergröße &nbsp;$e_ν$&nbsp; nur die Werte &nbsp;$0$&nbsp; und &nbsp;$1$&nbsp; annehmen kann:
<math>\it p_{\rm B} =  \rm E[\rm Pr(\it e_{\nu}=\rm 1)]= {\rm E}[{\it e_{\nu}}]\hspace{0.05cm}.</math>
+
:$$\it p_{\rm B} =  \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]= {\rm E}\big[{\it e_{\nu}}\big]\hspace{0.05cm}.$$
Die obige Definition der Bitfehlerwahrscheinlichkeit gilt unabhängig davon, ob es statistische Bindungen innerhalb der Fehlerfolge &#9001;<i>e<sub>&nu;</sub></i>&#9002; gibt oder nicht. Je nachdem ist der Aufwand zur Berechnung von <i>p</i><sub>B</sub> unterschiedlich groß und bei einer Systemsimulation müssen unterschiedliche digitale Kanalmodelle herangezogen werden.<br>
+
*Die obige Definition der Bitfehlerwahrscheinlichkeit gilt unabhängig davon,&nbsp; ob es statistische Bindungen innerhalb der Fehlerfolge &nbsp;$〈e_ν〉$&nbsp; gibt oder nicht.&nbsp; Je nachdem muss man bei einer Systemsimulation unterschiedliche digitale Kanalmodelle verwenden.&nbsp; Der Aufwand zur &nbsp;$p_{\rm B}$&ndash;Berechnung hängt hiervon ab.
Im Kapitel 5 wird gezeigt, dass das sog. BSC&ndash;Modell (<i>Binary Symmetrical Channel</i>) statistisch unabhängige Fehler liefert, während für die Beschreibung von Bündelfehlerkanälen auf die Modelle von Gilbert&ndash;Elliott: .: Capacity of Burst–Noise Channel, In: Bell Syst. Techn. J. Vol. 39, 1960, pp. 1253–1266 and McCullough : The Binary Regenerative Channel, In: Bell Syst. Techn. J. (47), 1968 zurückgegriffen werden muss.
+
<br>
 +
Im fünften Hauptkapitel wird gezeigt, dass das so genannte &nbsp;[[Digitalsignalübertragung/Binary_Symmetric_Channel_(BSC)|BSC&ndash;Modell]]&nbsp; ("Binary Symmetrical Channel")&nbsp; statistisch unabhängige Fehler liefert,&nbsp; während für die Beschreibung von Bündelfehlerkanälen auf die Modelle von &nbsp;[[Digitalsignalübertragung/Bündelfehlerkanäle#Kanalmodell_nach_Gilbert.E2.80.93Elliott|Gilbert&ndash;Elliott]]&nbsp; [Gil60]<ref>Gilbert, E. N.:&nbsp; Capacity of Burst–Noise Channel,&nbsp; In: Bell Syst. Techn. J. Vol. 39, 1960, pp. 1253–1266.</ref> und von &nbsp;[[Digitalsignalübertragung/Bündelfehlerkanäle#Kanalmodell_nach_McCullough|McCullough]]&nbsp; [McC68]<ref>McCullough, R.H.:&nbsp; The Binary Regenerative Channel,&nbsp; In: Bell Syst. Techn. J. (47), 1968.</ref> zurückgegriffen werden muss.
  
  
== Definition der Bitfehlerquote (1) ==
+
== Definition der Bitfehlerquote==
 
<br>
 
<br>
Die Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> eignet sich zum Beispiel gut für die Konzipierung und Optimierung von Digitalsystemen. Diese ist eine Apriori-Kenngröße, die eine Vorhersage über das Fehlerverhalten eines Nachrichtensystems erlaubt, ohne dass dieses bereits realisiert sein muss.<br>
+
Die Bitfehlerwahrscheinlichkeit eignet sich zum Beispiel gut für die Konzipierung und Optimierung von Digitalsystemen.&nbsp; Diese ist eine &nbsp;"Apriori-Kenngröße",&nbsp; die eine Vorhersage über das Fehlerverhalten eines Nachrichtensystems erlaubt,&nbsp; ohne dass dieses bereits realisiert sein muss.<br>
Dagegen muss zur messtechnischen Erfassung der Qualität eines realisierten Systems oder bei einer Systemsimulation auf die Bitfehlerquote übergegangen werden, die durch den Vergleich von Quellen&ndash; und Sinkensymbolfolge ermittelt wird. Diese ist somit eine Aposteriori-Kenngröße des Systems.
 
{{Definition}}''':'''Die  Bitfehlerquote (englisch: <i>Bit Error Rate</i>, BER) ist das Verhältnis aus der Anzahl <i>n</i><sub>B</sub>(<i>N</i>) der aufgetretenen Bitfehler (<i>&upsilon;<sub>&nu;</sub></i> &ne; <i>q<sub>&nu;</sub></i>) und der Anzahl <i>N</i> der insgesamt übertragenen Symbole:
 
<math>h_{\rm B}(N) = \frac{n_{\rm B}(N)}{N}  \hspace{0.05cm}.</math>
 
Im Sinne der Wahrscheinlichkeitsrechnung stellt die Bitfehlerquote eine relative Häufigkeit dar; sie wird demzufolge auch <font color="#000000"><span style="font-weight: bold;"> Bitfehlerhäufigkeit </span></font> genannt.{{end}}<br>
 
  
Die Schreibweise <i>h</i><sub>B</sub>(<i>N</i>) soll deutlich machen, dass die per Messung oder durch Simulation ermittelte Bitfehlerquote signifikant von dem Parameter <i>N</i> &ndash; also der Anzahl der insgesamt übertragenen oder simulierten Symbole &ndash; abhängt. Nach den elementaren Gesetzen der Wahrscheinlichkeitsrechnung stimmt nur im Grenzfall <i>N</i> &#8594; &#8734; die Aposteriori&ndash;Kenngröße <i>h</i><sub>B</sub> mit der Apriori&ndash;Kenngröße <i>p</i><sub>B</sub> exakt überein.<br><br>
+
Dagegen muss zur messtechnischen Erfassung der Qualität eines realisierten Systems oder bei einer Systemsimulation auf die Bitfehlerquote übergegangen werden,&nbsp; die durch den Vergleich von Quellensymbolfolge &nbsp;$〈q_ν〉$&nbsp; und Sinkensymbolfolge  &nbsp;$〈v_ν〉$&nbsp; ermittelt wird.&nbsp; Diese ist somit eine &nbsp;"Aposteriori-Kenngröße"&nbsp; des Systems.
Der Zusammenhang zwischen Wahrscheinlichkeit und relativer Häufigkeit wird in einem Lernvideo zum Buch &bdquo;Stochastische Signaltheorie&rdquo; verdeutlicht:<br>
 
[[:File:bernoulli.swf|Das Bernoullische Gesetz der großen Zahlen]] (Dateigröße: 1.97 MB, Dauer: 4:25)<br><br>
 
Für die nachfolgende Herleitung wird das BSC&ndash;Modell zugrunde gelegt, das in [http://www.lntwww.de/Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)#Fehlerkorrelationsfunktion_des_BSC.E2.80.93Modells Kapitel 5.2] im Detail beschrieben wird. Jedes einzelne Bit wird mit der Wahrscheinlichkeit <i>p</i> = Pr(<i>&upsilon;<sub>&nu;</sub></i> &ne; <i>q<sub>&nu;</sub></i>) = Pr(<i>e</i><sub>&nu;</sub> = 1) verfälscht, unabhängig von den Fehlerwahrscheinlichkeiten der benachbarten Symbole. Die (mittlere) Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> ist somit ebenfalls gleich <i>p</i>.
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Die&nbsp;  '''Bitfehlerquote'''&nbsp; $($englisch:&nbsp; "Bit Error Rate",&nbsp; $\rm BER)$&nbsp; ist das Verhältnis aus der Anzahl &nbsp;$n_{\rm B}(N)$&nbsp;  der aufgetretenen Bitfehler &nbsp;$(v_ν \ne q_ν)$&nbsp;  und der Anzahl &nbsp;$N$&nbsp; der insgesamt übertragenen Symbole:
 +
:$$h_{\rm B}(N) = \frac{n_{\rm B}(N)}{N}  \hspace{0.05cm}.$$
 +
Im Sinne der Wahrscheinlichkeitsrechnung ist die Bitfehlerquote eine &nbsp;[[Stochastische_Signaltheorie/Vom_Zufallsexperiment_zur_Zufallsgröße#Bernoullisches_Gesetz_der_gro.C3.9Fen_Zahlen|relative Häufigkeit]];&nbsp; sie wird deshalb auch&nbsp; "Bitfehlerhäufigkeit"&nbsp; genannt.}}<br>
  
== Definition der Bitfehlerquote (2) ==
+
*Die Schreibweise &nbsp;$h_{\rm B}(N)$&nbsp; soll deutlich machen,&nbsp; dass die per Messung oder durch Simulation ermittelte Bitfehlerquote signifikant vom Parameter &nbsp;$N$ &ndash; also der Anzahl der insgesamt übertragenen oder simulierten Symbole &ndash; abhängt.
 +
*Nach den elementaren Gesetzen der Wahrscheinlichkeitsrechnung stimmt nur im Grenzfall &nbsp;$N \to \infty$&nbsp; die Aposteriori&ndash;Kenngröße &nbsp;$h_{\rm B}(N)$&nbsp; mit der Apriori&ndash;Kenngröße &nbsp;$p_{\rm B}$&nbsp; exakt überein.<br><br>
 +
Der Zusammenhang zwischen Wahrscheinlichkeit und relativer Häufigkeit wird im Lernvideo [[Bernoullisches_Gesetz_der_großen_Zahlen_(Lernvideo)|Bernoullisches Gesetz der großen Zahlen]] verdeutlicht.
 +
 
 +
 
 +
== Bitfehlerwahrscheinlichkeit und Bitfehlerquote beim BSC-Modell==
 
<br>
 
<br>
Nun soll abgeschätzt werden, wie genau die Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> = <i>p</i> beim BSC-Modell durch die Bitfehlerquote <i>h</i><sub>B</sub> approximiert wird. Dies geschieht in mehreren Schritten:
+
Für die nachfolgenden Herleitungen wird das BSC&ndash;Modell&nbsp; ("Binary Symmetric Channel")&nbsp; zugrunde gelegt,&nbsp; das in &nbsp;[[Digitalsignal%C3%BCbertragung/Binary_Symmetric_Channel_(BSC)#Fehlerkorrelationsfunktion_des_BSC.E2.80.93Modells| Kapitel 5.2]]&nbsp; im Detail beschrieben wird.
*Die Anzahl der Bitfehler bei der Übertragung von <i>N</i> Symbolen ist eine diskrete Zufallsgröße::
+
*Jedes Bit wird mit der Wahrscheinlichkeit &nbsp;$p = {\rm Pr}(v_{\nu} \ne q_{\nu}) = {\rm Pr}(e_{\nu} = 1)$&nbsp; verfälscht,&nbsp; unabhängig von den Fehlerwahrscheinlichkeiten der benachbarten Symbole.
<math>n_{\rm B}(N) = \sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu} \hspace{0.2cm} \in \hspace{0.2cm} \{0, 1, ... , N \}\hspace{0.05cm}.</math>
+
*Die&nbsp; (mittlere)&nbsp; Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; ist somit ebenfalls gleich &nbsp;$p$.
*Bei statistisch unabhängigen Fehlern (BSC) ist <i>n</i><sub>B</sub> [http://www.lntwww.de/Stochastische_Signaltheorie/Binomialverteilung#Allgemeine_Beschreibung_der_Binomialverteilung binominalverteilt]. Demzufolge gilt::
+
<br>
<math>m_{n{\rm B}}=N \cdot p_{\rm B},\hspace{0.2cm}\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}\hspace{0.05cm}.</math>
+
 
*Für Mittelwert und Streuung der Bitfehlerquote <i>h</i><sub>B</sub> = <i>n</i><sub>B</sub>/<i>N</i> gilt deshalb::
+
Nun wird abgeschätzt,&nbsp; wie genau beim BSC-Modell die Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B} = p$&nbsp; durch die Bitfehlerquote &nbsp;$h_{\rm B}(N)$&nbsp; approximiert wird:  
 +
 
 +
*Die Anzahl der Bitfehler bei der Übertragung von &nbsp;$N$&nbsp; Symbolen ist eine diskrete Zufallsgröße:
 +
:$$n_{\rm B}(N) = \sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu} \hspace{0.2cm} \in \hspace{0.2cm} \{0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm} , N \}\hspace{0.05cm}.$$
 +
*Bei statistisch unabhängigen Fehlern&nbsp; ("BSC&ndash;Modell")&nbsp; ist &nbsp;$n_{\rm B}(N)$&nbsp; [[Stochastische_Signaltheorie/Binomialverteilung#Allgemeine_Beschreibung_der_Binomialverteilung|binominalverteilt]]. Demzufolge gilt für Mittelwert und Streuung dieser Zufallsgröße:
 +
:$$m_{n{\rm B}}=N \cdot p_{\rm B},\hspace{0.2cm}\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}\hspace{0.05cm}.$$
 +
*Für Mittelwert und Streuung der Bitfehlerquote &nbsp;$h_{\rm B}(N)= n_{\rm B}(N)/N$&nbsp; gilt deshalb::
 
<math>m_{h{\rm B}}= \frac{m_{n{\rm B}}}{N} = p_{\rm B}\hspace{0.05cm},\hspace{0.2cm}\sigma_{h{\rm B}}= \frac{\sigma_{n{\rm B}}}{N}=
 
<math>m_{h{\rm B}}= \frac{m_{n{\rm B}}}{N} = p_{\rm B}\hspace{0.05cm},\hspace{0.2cm}\sigma_{h{\rm B}}= \frac{\sigma_{n{\rm B}}}{N}=
 
   \sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}{N}}\hspace{0.05cm}.</math>
 
   \sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}{N}}\hspace{0.05cm}.</math>
*Nach Moivre und Laplace lässt sich die Binominalverteilung in eine Gaußverteilung überführen::
+
*Nach &nbsp;[https://de.wikipedia.org/wiki/Abraham_de_Moivre Moivre]&nbsp; und &nbsp;[https://de.wikipedia.org/wiki/Pierre-Simon_Laplace Laplace]&nbsp; kann aber die Binominalverteilung näherungsweise durch eine Gaußverteilung approximiert  werden:
<math>f_{h{\rm B}}({h_{\rm B}}) \approx \frac{1}{\sqrt{2\pi}\cdot\sigma_{h{\rm B}}}\cdot {\rm exp}
+
:$$f_{h{\rm B}}({h_{\rm B}}) \approx \frac{1}{\sqrt{2\pi}\cdot\sigma_{h{\rm B}}}\cdot {\rm e}^{-(h_{\rm B}-p_{\rm B})^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{h{\rm B}}^2)}.$$
  \left[-\frac{(h_{\rm B}-p_{\rm B})^2}{2 \cdot \sigma_{h{\rm B}}^2}\right].</math>
+
*Mit dem &nbsp;[[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen#.C3.9Cberschreitungswahrscheinlichkeit|Gaußschen Fehlerintergal]]&nbsp; ${\rm Q}(x)$&nbsp; lässt sich so die Wahrscheinlichkeit &nbsp;$p_\varepsilon$&nbsp; berechnen,&nbsp; dass die per Simulation/Messung über &nbsp;$N$&nbsp; Symbole ermittelte Bitfehlerquote &nbsp;$h_{\rm B}(N)$&nbsp;  betragsmäßig um weniger als einen Wert &nbsp;$\varepsilon$&nbsp; von der tatsächlichen Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; abweicht:
*Mit dem [[:File:QFunction (1).swf|Gaußschen Fehlerintergal]] Q(<i>x</i>) lässt sich somit die Wahrscheinlichkeit <i>p</i><sub>&epsilon;</sub> berechnen, dass die per Simulation/Messung über <i>N</i> Symbole ermittelte Bitfehlerquote <i>h</i><sub>B</sub>(<i>N</i>) betragsmäßig um weniger als einen Wert <i>&epsilon;</i> von der tatsächlichen Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> abweicht::
+
:$$p_{\varepsilon}= {\rm Pr} \left( |h_{\rm B}(N) - p_{\rm B}| < \varepsilon \right)
<math>p_{\varepsilon}= {\rm Pr} \left( |h_{\rm B}(N) - p_{\rm B}| < \varepsilon \right)
 
 
   = 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon}{\sigma_{h{\rm B}}} \right)=
 
   = 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon}{\sigma_{h{\rm B}}} \right)=
   1 -2 \cdot {\rm Q} \left( \frac{\varepsilon \cdot \sqrt{N}}{\sqrt{p_{\rm B} \cdot (1-p_{\rm B})}} \right)\hspace{0.05cm}.</math>
+
   1 -2 \cdot {\rm Q} \left( \frac{\varepsilon \cdot \sqrt{N}}{\sqrt{p_{\rm B} \cdot (1-p_{\rm B})}} \right)\hspace{0.05cm}.$$
Dieses Ergebnis ist wie folgt zu interpretieren: Wenn man unendlich viele Versuchsreihen über jeweils <i>N</i> Symbole durchführt, ist der Mittelwert
 
<i>m</i><sub><i>h</i>B</sub> tatsächlich gleich der gesuchten Fehlerwahrscheinlichkeit <i>p</i><sub>B</sub>. Bei einer einzigen Versuchsreihe wird man dagegen nur eine Näherung erhalten, wobei die jeweilige Abweichung vom Sollwert bei mehreren Versuchsreihen gaußverteilt ist.
 
  
{{Beispiel}}''':''' Die Bitfehlerwahrscheinlichkeit betrage <i>p</i><sub>B</sub> = 10<sup>&ndash;3</sup> und es ist bekannt, dass die Bitfehler statistisch unabhängig sind. Macht man nun sehr viele Versuchsreihen mit jeweils <i>N</i> = 10<sup>5</sup> Symbolen, so werden die jeweiligen Ergebnisse <i>h</i><sub>B</sub> entsprechend einer Gaußverteilung um den Sollwert 10<sup>&ndash;3</sup> variieren. Die Streuung beträgt dabei
+
{{BlaueBox|TEXT= 
<math>\sigma_{h{\rm B}}=  \sqrt{{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N}}\approx 10^{-4}\hspace{0.05cm}.</math><br>
+
$\text{Fazit:}$&nbsp; Dieses Ergebnis ist wie folgt zu interpretieren:
Die Wahrscheinlichkeit, dass die relative Häufigkeit einen Wert zwischen 0.9 &middot; 10<sup>&ndash;3</sup> und 1.1 &middot; 10<sup>&ndash;3</sup> (<i>&epsilon;</i> = 10<sup>&ndash;4</sup>) haben wird, ist somit gleich <i>p<sub>&epsilon;</sub></i> = 1 &ndash; 2 &middot; Q(<i>&epsilon;</i>/<i>&sigma;<sub>h</sub></i><sub>B</sub>) = 1 &ndash; 2 &middot; Q(1) &asymp; 68.4%. Soll diese Wahrscheinlichkeit (Genauigkeit) auf 95% gesteigert werden, so müsste <i>N</i> auf  400&nbsp;000 erhöht werden.
+
#Führt man unendlich viele Versuchsreihen über jeweils &nbsp;$N$&nbsp; Symbole durch,&nbsp; ist der Mittelwert &nbsp;$m_{h{\rm B} }$&nbsp; tatsächlich gleich der gesuchten Bitfehlerwahrscheinlichkeit.  
{{end}}
+
#Bei nur einer Versuchsreihe erhält man dagegen nur eine Näherung,&nbsp; wobei die jeweilige Abweichung vom Sollwert bei mehreren Versuchsreihen gaußverteilt ist.}}
  
  
== Fehlerwahrscheinlichkeit bei Gaußschem Rauschen (1) ==
+
{{GraueBox|TEXT= 
 +
$\text{Beispiel 1:}$&nbsp; Die Bitfehlerwahrscheinlichkeit betrage &nbsp;$p_{\rm B}= 10^{-3}$&nbsp; und es ist bekannt,&nbsp; dass die Bitfehler statistisch unabhängig sind.
 +
*Macht man nun sehr viele Versuchsreihen mit jeweils &nbsp;$N= 10^{5}$&nbsp; Symbolen,&nbsp; so werden die jeweiligen Ergebnisse  &nbsp;$h_{\rm B}(N)$&nbsp; entsprechend einer Gaußverteilung um den Sollwert &nbsp;$10^{-3}$&nbsp; variieren.&nbsp; Die Streuung beträgt dabei &nbsp;$\sigma_{h{\rm B} }=  \sqrt{ { p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N} }\approx 10^{-4}\hspace{0.05cm}.$
 +
*Die Wahrscheinlichkeit,&nbsp; dass die relative Häufigkeit einen Wert zwischen &nbsp;$0.9 \cdot 10^{-3}$&nbsp; und &nbsp;$1.1 \cdot 10^{-3}$&nbsp;  haben wird &nbsp;  $(\varepsilon=10^{-4})$,&nbsp; ist somit gleich
 +
:$$p_{\varepsilon} = 1 - 2 \cdot  {\rm Q} \left({\varepsilon}/{\sigma_{h{\rm B} } } \right )= 1 - 2 \cdot {\rm Q} (1) \approx 68.4\%.$$
 +
*Soll die Genauigkeit auf &nbsp;$95\%$&nbsp; gesteigert werden,&nbsp; so wären  &nbsp;$N = 400\hspace{0.05cm}000$&nbsp; Symbole erforderlich.}}
 +
 
 +
 
 +
== Fehlerwahrscheinlichkeit bei Gaußschem Rauschen==
 
<br>
 
<br>
Entsprechend den [http://www.lntwww.de/Digitalsignal%C3%BCbertragung/Systemkomponenten_eines_Basisband%C3%BCbertragungssystems#Ersatzschaltbild_und_Voraussetzungen_f.C3.BCr_Kapitel_1 Voraussetzungen] zu diesem Kapitel gehen wir davon aus, dass das Detektionssignal zu den Detektionszeitpunkten wie folgt dargestellt werden kann::
+
Entsprechend den &nbsp;[[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#Ersatzschaltbild_und_Voraussetzungen_f.C3.BCr_das_erste_Hauptkapitel| Voraussetzungen zu diesem Kapitel]]&nbsp; gehen wir von folgenden Annahmen aus:
<math> d(\nu  T) = d_{\rm S}(\nu  T)+d_{\rm N}(\nu T)\hspace{0.05cm}. </math>
+
[[Datei:P_ID1259__Dig_T_1_2_S3_v2.png|right|frame|Fehlerwahrscheinlichkeit bei Gaußschem Rauschen|class=fit]]
Der Nutzanteil wird durch die Wahrscheinlichkeitsdichtefunktion (WDF) <i>f</i><sub><i>d</i>S</sub>(<i>d</i><sub>S</sub>) beschrieben, wobei wir hier von unterschiedlichen Auftrittswahrscheinlichkeiten <i>p</i><sub>L</sub> = Pr(<i>d</i><sub>S</sub> = &ndash;<i>s</i><sub>0</sub>),
+
*Das Detektionssignal zu den Detektionszeitpunkten kann wie folgt dargestellt werden: &nbsp;
<i>p</i><sub>H</sub> = Pr(<i>d</i><sub>S</sub> = +<i>s</i><sub>0</sub>) = 1&ndash; <i>p</i><sub>L</sub> ausgehen. Die WDF <i>f</i><sub><i>d</i>N</sub>(<i>d</i><sub>N</sub>) der Störkomponente ist gaußförmig und besitzt die Streuung <i>&sigma;<sub>d</sub></i>.<br><br>
+
:$$ d(\nu  T) = d_{\rm S}(\nu  T)+d_{\rm N}(\nu T)\hspace{0.05cm}. $$
[[Datei:P_ID1259__Dig_T_1_2_S3_v2.png|Fehlerwahrscheinlichkeit bei Gaußschem Rauschen|class=fit]]
 
<br><br>
 
Die WDF <i>f</i><sub><i>d</i></sub>(<i>d</i>) der Detektionsabtastwerte <i>d</i>(<i>&nu;</i><i>T</i>) ergibt sich unter der Voraussetzung, dass <i>d</i><sub>S</sub>(<i>&nu;</i><i>T</i>) und <i>d</i><sub>N</sub>(<i>&nu;</i><i>T</i>) statistisch unabhängig voneinander sind (&bdquo;signalunabhängiges Rauschen&rdquo;), als Faltungsprodukt<nowiki>:</nowiki>
 
  
<math>f_d(d) = f_{d{\rm S}}(d_{\rm S}) \star f_{d{\rm N}}(d_{\rm N})\hspace{0.05cm}.</math><br><br>
+
*Der Nutzanteil wird durch die Wahrscheinlichkeitsdichtefunktion (WDF) &nbsp;$f_{d{\rm S}}(d_{\rm S}) $&nbsp; beschrieben,&nbsp; wobei wir hier von unterschiedlichen Auftrittswahrscheinlichkeiten  ausgehen.
Der Schwellenwertentscheider mit der Schwelle <i>E</i> = 0 trifft dann eine falsche Entscheidung, wenn
+
:$$p_{\rm L} = {\rm Pr}(d_{\rm S} = -s_0),\hspace{0.5cm}p_{\rm H} = {\rm Pr}(d_{\rm S} = +s_0)= 1-p_{\rm L}.$$
*das Symbol <b>L</b> gesendet wurde (<i>d</i><sub>S</sub> = &ndash;<i>s</i><sub>0</sub>) und <i>d</i> > 0 ist (rote schraffierte Fläche), oder
+
*das Symbol <b>H</b> gesendet wurde (<i>d</i><sub>S</sub> = +<i>s</i><sub>0</sub>) und <i>d</i> < 0 ist (blaue schraffierte Fläche).
+
*Die WDF &nbsp;$f_{d{\rm N}}(d_{\rm N})$&nbsp; der Störkomponente sei gaußförmig und besitze die Streuung &nbsp;$\sigma_d$.
<br>Da die Flächen der zwei Gaußkurven zusammen 1 ergeben, gibt die Summe aus der rot und der blau schraffierten Fläche die Bitfehlerwahrscheinlichkeit <i>p</i><sub>B</sub> an. Die beiden grün schraffierten Flächen in der oberen Wahrscheinlichkeitsdichtefunktion <i>f</i><sub><i>d</i>N</sub>(<i>d</i><sub>N</sub>) sind &ndash; jede für sich &ndash; ebenfalls gleich <i>p</i><sub>B</sub>.<br>
+
<br clear=all>
Die anhand der Grafik veranschaulichten Ergebnisse sollen nun formelmäßig hergeleitet werden. Es gilt:
+
Unter der Voraussetzung,&nbsp; dass &nbsp;$d_{\rm S}(\nu  T)$&nbsp; und &nbsp;$d_{\rm N}(\nu T)$&nbsp; statistisch unabhängig voneinander sind  &nbsp;(&bdquo;signalunabhängiges Rauschen&rdquo;),&nbsp; ergibt sich die WDF &nbsp;$f_d(d) $&nbsp; der Detektionsabtastwerte &nbsp;$d(\nu  T)$&nbsp; als das Faltungsprodukt
<math>p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( \upsilon_\nu = \mathbf{H}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{L})+
+
:$$f_d(d) = f_{d{\rm S}}(d_{\rm S}) \star f_{d{\rm N}}(d_{\rm N})\hspace{0.05cm}.$$
  p_{\rm H} \cdot {\rm Pr}( \upsilon_\nu = \mathbf{L}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{H})\hspace{0.05cm}.</math>
 
<br>Hierbei sind <i>p</i><sub>L</sub> und <i>p</i><sub>H</sub> die Quellensymbolwahrscheinlichkeiten, während die jeweils zweiten, bedingten Wahrscheinlichkeiten Pr(<i>&upsilon;<sub>&nu;</sub></i> | <i>q<sub>&nu;</sub></i>) die Verfälschungen durch den AWGN&ndash;Kanal beschreiben.
 
Aus der Entscheidungsregel des Schwellenwertentscheiders (mit Schwelle <i>E</i> = 0) ergibt sich auch::
 
<math>p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( d(\nu T)>0)+ p_{\rm H} \cdot {\rm Pr}( d(\nu  T)<0) =</math>
 
::<math>= p_{\rm L} \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0)+  p_{\rm H} \cdot {\rm Pr}( d_{\rm N}(\nu T)<-s_0) \hspace{0.05cm}.</math>
 
Die Herleitung wird auf der nächsten Seite fortgesetzt.
 
  
 +
Der Schwellenwertentscheider mit der Schwelle &nbsp;$E = 0$&nbsp; trifft immer dann eine falsche Entscheidung,&nbsp; wenn
 +
*das Symbol &nbsp;$\rm L$&nbsp; gesendet wurde &nbsp;$(d_{\rm S} = -s_0)$ und &nbsp;$d > 0$&nbsp; ist (rote schraffierte Fläche), oder
 +
*das Symbol  &nbsp;$\rm H$&nbsp; gesendet wurde &nbsp;$(d_{\rm S} = +s_0)$ und &nbsp;$d < 0$&nbsp; ist (blaue schraffierte Fläche).
 +
<br>
 +
Da die Flächen der roten und der blauen  Gaußkurven zusammen &nbsp;$1$&nbsp; ergeben,&nbsp; gibt die Summe aus der rot und der blau schraffierten Fläche die Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; an.&nbsp; Die beiden grün schraffierten Flächen in der oberen Wahrscheinlichkeitsdichtefunktion &nbsp;$f_{d{\rm N}}(d_{\rm N})$&nbsp; sind &ndash; jede für sich &ndash; ebenfalls gleich &nbsp;$p_{\rm B}$.
  
== Fehlerwahrscheinlichkeit bei Gaußschem Rauschen (2) ==
+
Die anhand der Grafik veranschaulichten Ergebnisse sollen nun formelmäßig hergeleitet werden.&nbsp; Ausgegangen wird von der Gleichung
<br>
+
:$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( v_\nu = \mathbf{H}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{L})+
Die weitere Herleitung soll nun Schritt für Schritt erfolgen. Ausgegangen wird von der Gleichung::
+
  p_{\rm H} \cdot {\rm Pr}(v_\nu = \mathbf{L}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{H})\hspace{0.05cm}.$$
<math>p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( d(\nu T)>0)+
+
*Hierbei sind &nbsp;$p_{\rm L} $&nbsp; und &nbsp;$p_{\rm H} $&nbsp; die Quellensymbolwahrscheinlichkeiten.&nbsp; Die jeweils zweiten&nbsp; (bedingten)&nbsp; Wahrscheinlichkeiten &nbsp;$ {\rm Pr}( v_\nu \hspace{0.05cm}|\hspace{0.05cm} q_\nu)$&nbsp;  beschreiben die Verfälschungen durch den AWGN&ndash;Kanal.&nbsp; Aus der Entscheidungsregel des Schwellenwertentscheiders &nbsp;$($mit Schwelle &nbsp;$E = 0)$&nbsp; ergibt sich auch:
  p_{\rm H} \cdot {\rm Pr}( d(\nu  T)<0) =</math>
+
:$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( d(\nu T)>0)+ p_{\rm H} \cdot {\rm Pr}( d(\nu  T)<0) =p_{\rm L} \cdot {\rm Pr}( d_{\rm N}(\nu T)>+s_0)+ p_{\rm H} \cdot {\rm Pr}( d_{\rm N}(\nu T)<-s_0) \hspace{0.05cm}.$$
::<math> = p_{\rm L} \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0)+
+
*Die beiden Überschreitungswahrscheinlichkeiten in obiger Gleichung sind aufgrund der Symmetrie der Gaußschen WDF &nbsp;$f_{d{\rm N}}(d_{\rm N})$&nbsp; gleich.&nbsp; Es gilt:
  p_{\rm H} \cdot {\rm Pr}( d_{\rm N}(\nu T)<-s_0) \hspace{0.05cm}.</math>
+
:$$p_{\rm B} = (p_{\rm L} + p_{\rm H}) \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0) = {\rm Pr}( d_{\rm N}(\nu T)>s_0)\hspace{0.05cm}.$$
*Die beiden Überschreitungswahrscheinlichkeiten in obiger Gleichung sind aufgrund der Symmetrie der Gaußschen WDF <i>f</i><sub><i>d</i>N</sub>(<i>d</i><sub>N</sub>) gleich und es gilt::
+
:Das bedeutet: &nbsp; $p_{\rm B}$&nbsp; hängt bei einem Binärsystem mit der Schwelle &nbsp;$E = 0$&nbsp; nicht von den Symbolwahrscheinlichkeiten &nbsp;$p_{\rm L} $&nbsp; und &nbsp;$p_{\rm H} = 1- p_{\rm L}$&nbsp; ab.
<math>p_{\rm B} = (p_{\rm L} + p_{\rm H}) \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0) = {\rm Pr}( d_{\rm N}(\nu T)>s_0)\hspace{0.05cm}.</math>
+
*Die Wahrscheinlichkeit,&nbsp; dass der AWGN&ndash;Rauschterm &nbsp;$d_{\rm N}$&nbsp; mit Streuung &nbsp;$\sigma_d$&nbsp; größer ist als die NRZ&ndash;Sendeimpulsamplitude &nbsp;$s_0$,&nbsp; ergibt sich damit zu:
:Das bedeutet, dass die Bitfehlerwahrscheinlichkeit bei einem Binärsystem mit der Schwelle <i>E</i> = 0 nicht von den Symbolwahrscheinlichkeiten <i>p</i><sub>L</sub> und <i>p</i><sub>H</sub> = 1 &ndash; <i>p</i><sub>L</sub> abhängt.
+
:$$p_{\rm B} = \int_{s_0}^{+\infty}f_{d{\rm N}}(d_{\rm N})\,{\rm d} d_{\rm N} =
*Die Wahrscheinlichkeit, dass der gaußverteilte Stör&ndash; bzw. Rauschterm mit Streuung <i>&sigma;<sub>d</sub></i> größer ist als die NRZ&ndash;Sendeimpulsamplitude <i>s</i><sub>0</sub>, ergibt sich zu:
 
<math>p_{\rm B} = \int_{s_0}^{+\infty}f_{d{\rm N}}(d_{\rm N})\,{\rm d} d_{\rm N} =
 
 
   \frac{\rm 1}{\sqrt{2\pi} \cdot \sigma_d}\int_{
 
   \frac{\rm 1}{\sqrt{2\pi} \cdot \sigma_d}\int_{
s_0}^{+\infty}{\rm exp} \left [-\frac{d_{\rm N}^2}{2\sigma_d^2} \right ]\,{\rm d} d_{\rm
+
s_0}^{+\infty}{\rm e} ^{-d_{\rm N}^2/(2\sigma_d^2) }\,{\rm d} d_{\rm
N}\hspace{0.05cm}.</math>
+
N}\hspace{0.05cm}.$$
*Unter Verwendung des komplementären Gaußschen Fehlerintegrals lautet das Ergebnis:
+
*Unter Verwendung des komplementären Gaußschen Fehlerintegrals &nbsp;${\rm Q}(x)$&nbsp; lautet das Ergebnis:
<math>p_{\rm B} =  {\rm Q} \left( \frac{s_0}{\sigma_d}\right)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
+
:$$p_{\rm B} =  {\rm Q} \left( \frac{s_0}{\sigma_d}\right)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.</math>
+
x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
*Häufig &ndash; insbesondere in der englischsprachigen Literatur &ndash; wird anstelle der Funktion Q(<i>x</i>) die vergleichbare komplementäre Error Function erfc(<i>x</i>) verwendet. Mit dieser gilt::
+
*Häufig wird anstelle von &nbsp;${\rm Q}(x)$&nbsp; die vergleichbare komplementäre&nbsp; "Error Function" &nbsp;${\rm erfc}(x)$&nbsp; verwendet.&nbsp; Mit dieser gilt:
<math>p_{\rm B} =  {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2}\cdot \sigma_d}\right)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
+
:$$p_{\rm B} =  {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2}\cdot \sigma_d}\right)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
 
  {\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it
 
  {\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it
x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.</math>
+
x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$
Beide Funktionen findet man in Formelsammlungen in tabellarischer Form. Nachfolgend finden Sie ein Interaktionsmodul zur Berechnung der Funktionswerte von Q(<i>x</i>) und 1/2 &middot; erfc(<i>x</i>):<br>
 
[[:File:QFunction (2).swf|Komplementäre Gaußsche Fehlerfunktionen]]<br>
 
Zur Auswertung obiger Gleichungen ist nach Ansicht des Autors bei der Basisbandübertragung die Q&ndash;Funktion besser geeignet. Aber das ist natürlich Geschmacksache.
 
  
{{Beispiel}}'':'' Für das Folgende wird vorausgesetzt, dass Tabellen zur Verfügung stehen, in denen das Argument der Gaußschen Fehlerfunktionen im Abstand 0.1 aufgelistet sind.
+
Beide Funktionen findet man in Formelsammlungen in tabellarischer Form.&nbsp;  Sie können zur Berechnung der Funktionswerte von &nbsp;${\rm Q}(x)$&nbsp; und &nbsp;$1/2 \cdot {\rm erfc}(x)$&nbsp; aber auch unser interaktives HTML 5/JavaScript&ndash;Applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]]&nbsp; benutzen.
Mit <i>s</i><sub>0</sub>/<i>&sigma;<sub>d</sub></i> = 4 erhält man für die Bitfehlerwahrscheinlichkeit:
 
:<math>p_{\rm B} = {\rm Q} (4) = 0.317 \cdot 10^{-4}\hspace{0.05cm},</math>
 
:<math>p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2}})= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.</math>
 
Richtig ist der erste Wert. Bei der zweiten Berechnungsart muss man runden oder &ndash; noch besser &ndash; interpolieren, was aufgrund der starken Nichtlinearität dieser Funktion sehr schwierig ist.<br>
 
Außerhalb von Übungsbeispielen wird <i>s</i><sub>0</sub>/<i>&sigma;<sub>d</sub></i> in der Regel einen &bdquo;krummen&rdquo; Wert besitzen. In diesem Fall bietet &bdquo;Q(<i>x</i>)&rdquo; natürlich keinen Vorteil gegenüber &bdquo;erfc(<i>x</i>)&rdquo;.
 
{{end}}
 
  
 +
{{GraueBox|TEXT= 
 +
$\text{Beispiel 2:}$&nbsp; Für das Folgende wird vorausgesetzt,&nbsp; dass Tabellen zur Verfügung stehen,&nbsp; in denen das Argument der Gaußschen Fehlerfunktionen im Abstand &nbsp;$0.1$&nbsp; aufgelistet sind.
  
== Optimaler Binärempfänger - Realisierung mit Matched-Filter (1) ==
+
Mit &nbsp;$s_0/\sigma_d = 4$&nbsp; erhält man für die Bitfehlerwahrscheinlichkeit gemäß der Q&ndash;Funktion:
 +
:$$p_{\rm B} = {\rm Q} (4) = 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$
 +
Nach der zweiten Gleichung ergibt sich:
 +
:$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$
 +
*Richtig ist der erste Wert.&nbsp; Bei der zweiten Berechnungsart muss man runden oder &ndash; noch besser &ndash; interpolieren,&nbsp; was aufgrund der starken Nichtlinearität dieser Funktion sehr schwierig ist.<br>
 +
*Bei den gegebenen Zahlenwerten ist demnach die  Q&ndash;Funktion besser geeignet.&nbsp; Außerhalb von Übungsbeispielen wird &nbsp;$s_0/\sigma_d$&nbsp; in der Regel einen &bdquo;krummen&rdquo; Wert besitzen.&nbsp; In diesem Fall bietet die Q&ndash;Funktion  natürlich keinen Vorteil gegenüber &nbsp;${\rm erfc}(x)$.}}
 +
 
 +
== Optimaler Binärempfänger - Realisierung mit Matched-Filter ==
 
<br>
 
<br>
Für das Folgende wird von den im Kapitel 1.1 genannten [http://www.lntwww.de/Digitalsignal%C3%BCbertragung/Systemkomponenten_eines_Basisband%C3%BCbertragungssystems#Ersatzschaltbild_und_Voraussetzungen_f.C3.BCr_Kapitel_1 Voraussetzungen] ausgegangen. Dann kann man für den Frequenzgang und die Impulsantwort des Empfängerfilters ansetzen::
+
Wir gehen weiter von den &nbsp;[[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#Ersatzschaltbild_und_Voraussetzungen_f.C3.BCr_das_erste_Hauptkapitel|vorne festgelegten Voraussetzungen]]&nbsp; aus.  
<math>H_{\rm E}(f) =  {\rm si}(\pi f T) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} h_{\rm E}(t)  =  \left\{ \begin{array}{c} 1/T  \\
+
 
 +
[[Datei:P_ID1261__Dig_T_1_2_S4_v1.png|right|frame|Optimaler Binärempfänger (Matched-Filter-Variante)]]
 +
 
 +
*Dann kann man für den Frequenzgang und die Impulsantwort des Empfängerfilters ansetzen:
 +
:$$H_{\rm E}(f) =  {\rm si}(\pi f T)=  {\rm sinc}(f T),$$
 +
:$$H_{\rm E}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} h_{\rm E}(t)  =  \left\{ \begin{array}{c} 1/T  \\
 
  1/(2T) \\ 0 \\ \end{array} \right.\quad
 
  1/(2T) \\ 0 \\ \end{array} \right.\quad
 
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
 
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}
Zeile 141: Zeile 162:
 
|\hspace{0.05cm}t\hspace{0.05cm}|= T/2 \hspace{0.05cm},\\
 
|\hspace{0.05cm}t\hspace{0.05cm}|= T/2 \hspace{0.05cm},\\
 
|\hspace{0.05cm}t\hspace{0.05cm}|>T/2 \hspace{0.05cm}. \\
 
|\hspace{0.05cm}t\hspace{0.05cm}|>T/2 \hspace{0.05cm}. \\
\end{array}</math>
+
\end{array}$$
Aufgrund der Linearität kann für das Detektionsnutzsignal geschrieben werden::
+
 
<math>d_{\rm S}(t) =  \sum_{(\nu)} a_\nu \cdot g_d ( t - \nu \cdot T)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}g_d(t) = g_s(t) \star h_{\rm E}(t) \hspace{0.05cm}.</math>
+
*Aufgrund der Linearität kann für den Signalanteil des Detektionssignal geschrieben werden:
Die Faltung zweier Rechtecke gleicher Breite <i>T</i> ergibt einen dreieckförmigen Detektionsgrundimpuls <i>g<sub>d</sub></i>(<i>t</i>) mit
+
:$$d_{\rm S}(t) =  \sum_{(\nu)} a_\nu \cdot g_d ( t - \nu \cdot T)\hspace{0.2cm}{\rm mit}\hspace{0.2cm}g_d(t) = g_s(t) \star h_{\rm E}(t) \hspace{0.05cm}.$$
<i>g<sub>d</sub></i>(<i>t</i> = 0) = <i>s</i><sub>0</sub>.  
+
 
Wegen <i>g<sub>d</sub></i>(|<i>t</i>| &#8805; <i>T</i>) = 0 ist das System  
+
*Die Faltung zweier Rechtecke gleicher Breite &nbsp;$T$&nbsp; und Höhe &nbsp;$s_0$&nbsp; ergibt einen dreieckförmigen Detektionsgrundimpuls &nbsp;$g_d(t)$.&nbsp;
impulsinterferenzfrei; es gilt <i>d</i><sub>S</sub>(<i>&nu;</i><i>T</i>) = &plusmn;<i>s</i><sub>0</sub>.<br><br>
+
 
[[Datei:P_ID1261__Dig_T_1_2_S4_v1.png|Optimaler Binärempfänger (Matched-Filter-Variante)|class=fit]]<br><br>
+
*Dabei ist &nbsp;$g_d(t = 0) = s_0$.&nbsp; Wegen &nbsp;$g_d(|t| \ge T/2) = 0$&nbsp; ist das System impulsinterferenzfrei &nbsp; &rArr; &nbsp;  es gilt &nbsp;$d_{\rm S}(\nu T)= \pm s_0$.
Die Varianz des Detektionsstörsignals <i>d</i><sub>N</sub>(<i>t</i>) &ndash; also die Detektionsstörleistung &ndash; lautet::
+
 
<math>\sigma _d ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{
+
*Die Varianz des Detektionsstörsignals &nbsp;$d_{\rm N}(t)$ &ndash; also die&nbsp; "Detektionsstörleistung"&nbsp; &ndash; lautet:
 +
:$$\sigma _d ^2  = \frac{N_0 }{2} \cdot \int_{ - \infty }^{
 
+ \infty } {\left| {H_{\rm E}( f )} \right|^2
 
+ \infty } {\left| {H_{\rm E}( f )} \right|^2
 
\hspace{0.1cm}{\rm{d}}f} =  \frac{N_0 }{2}  \cdot \int_{-
 
\hspace{0.1cm}{\rm{d}}f} =  \frac{N_0 }{2}  \cdot \int_{-
 
\infty }^{+ \infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f =
 
\infty }^{+ \infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f =
\frac{{N_0 }}{2T} \hspace{0.05cm}.</math>
+
\frac{N_0 }{2T} \hspace{0.05cm}.$$
Damit ergeben sich für die Bitfehlerwahrscheinlichkeit folgende Gleichungen::
+
*Damit ergeben sich für die&nbsp; '''Bitfehlerwahrscheinlichkeit'''&nbsp; entsprechend der letzten Seite die beiden äquivalenten Gleichungen:
<math>p_{\rm B}  =  {\rm Q} \left( \sqrt{\frac{2 \cdot s_0^2 \cdot T}{N_0}}\right)=  {\rm Q} \left(
+
:$$p_{\rm B}  =  {\rm Q} \left( \sqrt{\frac{2 \cdot s_0^2 \cdot T}{N_0}}\right)=  {\rm Q} \left(
  \sqrt{\rho_d}\right)\hspace{0.05cm},</math>
+
  \sqrt{\rho_d}\right)\hspace{0.05cm},\hspace{0.5cm}
:<math>p_{\rm B} = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{
+
p_{\rm B} = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{
 
s_0^2 \cdot T}/{N_0}}\right)=  {1}/{2}\cdot {\rm erfc}\left(
 
s_0^2 \cdot T}/{N_0}}\right)=  {1}/{2}\cdot {\rm erfc}\left(
 
  \sqrt{{\rho_d}/{2}}\right)
 
  \sqrt{{\rho_d}/{2}}\right)
\hspace{0.05cm}.</math>
+
\hspace{0.05cm}.$$
<i>&rho;<sub>d</sub></i>  ist das momentane Signal&ndash;zu&ndash;Stör&ndash;Leistungsverhältnis (SNR) des Detektionssignals <i>d</i>(<i>t</i>) zu den Zeitpunkten <i>&nu;</i><i>T</i>. Wir nennen es im Folgenden kurz &bdquo;Detektions&ndash;SNR&rdquo;. Es gilt die Definition:
 
<math>\rho_d = \frac{d_{\rm S}^2(\nu  T)}{{\rm E}[d_{\rm N}^2(\nu  T)]}= \frac{s_0^2}{\sigma _d ^2}
 
\hspace{0.05cm}.</math>
 
  
 +
{{BlaueBox|TEXT= 
 +
$\text{Definition:}$&nbsp; Verwendet ist das momentane&nbsp; '''Signal&ndash;zu&ndash;Stör&ndash;Leistungsverhältnis'''&nbsp; $\rm (SNR)$&nbsp; $\rho_d$&nbsp;&nbsp;  des Detektionssignals &nbsp;$d(t)$&nbsp; zu den Zeiten &nbsp;$\nu T$, kurz '''Detektions&ndash;SNR''':
 +
:$$\rho_d = \frac{d_{\rm S}^2(\nu  T)}{ {\rm E}\big[d_{\rm N}^2(\nu  T)\big ]}= \frac{s_0^2}{\sigma _d ^2}
 +
\hspace{0.05cm}.$$}}
  
== Optimaler Binärempfänger - Realisierung mit Matched-Filter (2) ==
+
 
<br>
+
Ein Vergleich dieses Ergebnisses mit der Seite &nbsp;[[Stochastische_Signaltheorie/Matched-Filter#Optimierungskriterium_des_Matched.E2.80.93Filters| Optimierungskriterium des Matched-Filters]]&nbsp; im Buch &bdquo;Stochastische Signaltheorie&rdquo; zeigt,&nbsp; dass das Empfangsfilter  
Ein Vergleich der Ergebnisse der letzten Seite mit [http://www.lntwww.de/Stochastische_Signaltheorie/Matched-Filter#Optimierungskriterium_des_Matched.E2.80.93Filters Kapitel 5.4] von Buch &bdquo;Stochastische Signaltheorie&rdquo; zeigt, dass das Empfangsfilter  
+
&nbsp;$H_{\rm E}(f)$&nbsp; ein an den Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; angepasstes Matched&ndash;Filter ist:
<i>H</i><sub>E</sub>(<i>f</i>) ein an den Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>) angepasstes Matched&ndash;Filter ist::
+
:$$H_{\rm E}(f) = H_{\rm MF}(f) = K_{\rm MF}\cdot G_s^*(f)\hspace{0.05cm}.$$
<math>H_{\rm E}(f) = H_{\rm MF}(f) = K_{\rm MF}\cdot G_s^*(f)\hspace{0.05cm}.</math><br><br>
+
Gegenüber der Seite &nbsp;[[Stochastische_Signaltheorie/Matched-Filter#Matched-Filter-Optimierung| Matched&ndash;Filter&ndash;Optimierung]]&nbsp; sind hier folgende Modifikationen berücksichtigt:
[[Datei:P_ID1261__Dig_T_1_2_S4_v1.png|Optimaler Binärempfänger (Matched-Filter-Variante)|class=fit]]<br><br>
+
*Die Matched&ndash;Filter&ndash;Konstante ist hier zu &nbsp;$K_{\rm MF} = 1/(s_0 \cdot T)$&nbsp; gesetzt.&nbsp; Damit ist der Frequenzgang &nbsp;$ H_{\rm MF}(f)$&nbsp; dimensionslos.
Gegenüber der Seite [http://www.lntwww.de/Stochastische_Signaltheorie/Matched-Filter#Matched-Filter-Optimierung_.281.29 Matched&ndash;Filter&ndash;Optimierung] sind hier folgende Modifikationen berücksichtigt:
+
 
*Die Matched&ndash;Filter&ndash;Konstante ist hier zu <i>K</i><sub>MF</sub> = 1/(<i>s</i><sub>0</sub> &middot; <i>T</i>) gesetzt. Damit ist der Frequenzgang <i>H</i><sub>MF</sub>(<i>f</i>) dimensionslos.
+
*Der im allgemeinen frei wählbare Detektionszeitpunkt ist hier zu &nbsp;$T_{\rm D} = 0$&nbsp; festgelegt.&nbsp; Damit ergibt sich allerdings ein akausales Filter.
*Der im allgemeinen frei wählbare Detektionszeitpunkt ist hier zu <i>T</i><sub>D</sub> = 0 gewählt. Damit ergibt sich allerdings ein akausales Filter.
+
 
*Das Detektions&ndash;SNR kann für jeden beliebigen Sendegrundimpuls <i>g<sub>s</sub></i>(<i>t</i>) mit Spektrum <i>G<sub>s</sub></i>(<i>f</i>) wie folgt dargestellt werden, wobei sich die rechte Identität aus dem Parsevalschen Theorem ergibt::
+
*Das Detektions&ndash;SNR kann für jeden beliebigen Sendegrundimpuls &nbsp;$g_s(t)$&nbsp; mit Spektrum &nbsp;$G_s(f)$&nbsp; wie folgt dargestellt werden,&nbsp; wobei sich die rechte Identität aus dem &nbsp;[https://de.wikipedia.org/wiki/Satz_von_Parseval Parsevalschen Theorem]&nbsp; ergibt:
<math>\rho_d = \frac{2 \cdot E_{\rm B}}{N_0}\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
+
:$$\rho_d = \frac{2 \cdot E_{\rm B}}{N_0}\hspace{0.4cm}{\rm mit}\hspace{0.4cm}
 
  E_{\rm B} =    \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  E_{\rm B} =    \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  d}t =    \int^{+\infty} _{-\infty} |G_s(f)|^2\,{\rm
 
  d}t =    \int^{+\infty} _{-\infty} |G_s(f)|^2\,{\rm
  d}f\hspace{0.05cm}.</math>
+
  d}f\hspace{0.05cm}.$$
*<i>E</i><sub>B</sub> wird oft als Energie pro Bit bezeichnet und <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> &ndash; fälschlicherweise &ndash; als SNR. Bei binärer Basisbandübertragung unterscheidet sich  <i>E</i><sub>B</sub>/<i>N</i><sub>0</sub> vom tatsächlichen SNR <i>&rho;<sub>d</sub></i> um den Faktor 2.
+
*$E_{\rm B}$&nbsp; wird oft als&nbsp; "Energie pro Bit"&nbsp; bezeichnet und &nbsp;$E_{\rm B}/N_0$ &ndash; fälschlicherweise &ndash; als &nbsp;$\rm SNR$.&nbsp; Wie aus der letzten Gleichung ersichtlich ist, unterscheidet sich nämlich bei binärer Basisbandübertragung   &nbsp;$E_{\rm B}/N_0$&nbsp; vom Detektions&ndash;SNR &nbsp;$\rho_d$&nbsp; um den Faktor &nbsp;$2$.
*Die auf der letzten Seite hergeleitete Bitfehlerwahrscheinlichkeit kann somit auch in der folgenden Weise geschrieben werden::
+
 
<math>p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)=  {1}/{2} \cdot{\rm erfc} \left( \sqrt{{E_{\rm B}}/{N_0}}\right)
+
 
\hspace{0.05cm}.</math>
+
{{BlaueBox|TEXT= 
Die Eigenschaften des Matched-Filters werden in folgendem Interaktionsmodul behandelt:
+
$\text{Fazit:}$&nbsp; Die hier hergeleitete '''Bitfehlerwahrscheinlichkeit des optimalen Binärempfängers bei bipolarer Signalisierung''' kann man somit auch wie folgt schreiben:
[[:File:Matched_Filter.swf|Zur Verdeutlichung des Matched-Filters.]]
+
:$$p_{\rm B} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)=  {1}/{2} \cdot{\rm erfc} \left( \sqrt{ {E_{\rm B} }/{N_0} }\right)
 +
\hspace{0.05cm}.$$
 +
Diese Gleichung gilt sowohl für die Realisierung mit Matched-Filter als auch für die Realisierungsform „Integrate & Dump”&nbsp; (siehe nächste Seite).}}
 +
 
  
 +
Zur Verdeutlichung der hier behandelten Thematik  weisen wir auf unser Interaktionsmodul &nbsp;[[Applets:Zur_Verdeutlichung_des_Matched-Filters|Zur Verdeutlichung des Matched-Filters]]&nbsp; hin.
  
 
== Optimaler Binärempfänger – Realisierungsform „Integrate & Dump” ==
 
== Optimaler Binärempfänger – Realisierungsform „Integrate & Dump” ==
 
<br>
 
<br>
Bei rechteckförmigen NRZ&ndash;Sendeimpulsen kann das Matched&ndash;Filter auch als Integrator (jeweils über eine Symboldauer <i>T</i>) realisiert werden. Damit gilt für das Detektionssignal zu den Detektionszeitpunkten::
+
Bei rechteckförmigen NRZ&ndash;Sendeimpulsen kann das Matched&ndash;Filter auch als Integrator&nbsp; $($jeweils über eine Symboldauer &nbsp;$T)$&nbsp; realisiert werden.&nbsp; Damit gilt für das Detektionssignal zu den Detektionszeitpunkten:
<math>d(\nu \cdot T + T/2) = \frac {1}{T} \cdot \int^{\nu \cdot T + T/2} _{\nu \cdot T - T/2} r(t)\,{\rm
+
 
  d}t \hspace{0.05cm}.</math>
+
[[Datei:P ID1263 Dig T 1 2 S6 alt kontrast.png|right|Frame|Signale beim MF– und beim I&E–Empfänger]]
Die folgende Grafik verdeutlicht die Unterschiede bei der Realisierung des optimalen Binärempfängers mit Matched&ndash;Filter (MF) &nbsp;&#8658;&nbsp; mittlere Skizze bzw. als &bdquo;Integrate & Dump&rdquo; (I&D) &nbsp;&#8658;&nbsp; untere Skizze.<br><br>
+
:$$d(\nu \cdot T + T/2) = \frac {1}{T} \cdot \int^{\nu \cdot T + T/2} _{\nu \cdot T - T/2} r(t)\,{\rm
[[Datei:P_ID1263__Dig_T_1_2_S6_v2.png|Signale beim MF– und beim I&E–Empfänger|class=fit]]<br><br>
+
  d}t \hspace{0.05cm}.$$
 +
Die Grafik verdeutlicht die Unterschiede bei der Realisierung des optimalen Binärempfängers
 +
*mit Matched&ndash;Filter $\rm (MF)$ &nbsp; &#8658; &nbsp; mittlere Skizze, bzw.  
 +
*als &bdquo;Integrate & Dump&rdquo; $\rm (I\&D)$ &nbsp; &#8658; &nbsp; untere Skizze.
 +
 
 +
 
 
Man erkennt aus diesen Signalverläufen:
 
Man erkennt aus diesen Signalverläufen:
*Das Detektionsnutzsignal <i>d</i><sub>S</sub>(<i>t</i>) ist zu den Detektionszeitpunkten in beiden Fällen gleich &plusmn;<i>s</i><sub>0</sub>.
+
*Das Detektionsnutzsignal &nbsp;$d_{\rm S}(t)$&nbsp; ist zu den Detektionszeitpunkten &nbsp; &rArr; &nbsp; gelbe Markierungen $\rm (MF$: &nbsp; bei  &nbsp;$\nu \cdot T$, &nbsp; $\rm I\&D$: &nbsp; bei &nbsp;$\nu \cdot T +T/2)$&nbsp; in beiden Fällen gleich $\pm s_0$.
 +
 
 
*Die unterschiedlichen Detektionszeitpunkte sind darauf zurückzuführen, dass das Matched&ndash;Filter im Gegensatz zu &bdquo;Integrate & Dump&rdquo; als akausal angesetzt wurde (siehe letzte Seite).
 
*Die unterschiedlichen Detektionszeitpunkte sind darauf zurückzuführen, dass das Matched&ndash;Filter im Gegensatz zu &bdquo;Integrate & Dump&rdquo; als akausal angesetzt wurde (siehe letzte Seite).
*Beim MF&ndash;Empfänger ist die Varianz des Detektionsstörsignals zu allen Zeiten <i>t</i> gleich::
+
 
<math>{\rm E}[d_{\rm N}^2(t)]= {\sigma _d ^2} = {\rm const.}</math>
+
*Beim Matched&ndash;Filter&ndash;Empfänger ist die Detektionsstörleistung  zu allen Zeiten &nbsp;$t$&nbsp; gleich: &nbsp; ${\rm E}\big[d_{\rm N}^2(t)\big]= {\sigma _d ^2} = {\rm const.}$.&nbsp;  Dagegen nimmt beim I&D&ndash;Empfänger diese Varianz vom Symbolanfang bis zum Symbolende zu.
:Dagegen nimmt beim I&D&ndash;Empfänger die Varianz von Symbolanfang bis Symbolende zu.
+
 
*Zu den Detektionszeitpunkten <i>&nu;T</i> ist die Detektionsstörleistung in beiden Fällen gleich, so dass sich die genau gleiche Bitfehlerwahrscheinlichkeit ergibt. Mit <i>E</i><sub>B</sub> = <i>s</i><sub>0</sub><sup>2</sup> &middot; <i>T</i> gilt nämlich::
+
*Zu den gelb markierten Zeitpunkten ist die Detektionsstörleistung in beiden Fällen gleich,&nbsp; so dass sich die gleiche Bitfehlerwahrscheinlichkeit ergibt.&nbsp; Mit &nbsp;$E_{\rm B} = s_0^2 \cdot T$&nbsp; gilt wieder:
<math>\sigma _d ^2  =  \frac{N_0}{2}  \cdot \int_{-
+
:$$\sigma _d ^2  =  \frac{N_0}{2}  \cdot \int_{-
 
\infty }^{ +\infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f =
 
\infty }^{ +\infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f =
\frac{N_0}{2T} \hspace{0.05cm}\hspace{0.2cm}
+
\frac{N_0}{2T} $$
\Rightarrow \hspace{0.2cm} p_{\rm B} = {\rm Q} \left( \sqrt{ s_0^2 /
+
:$$\Rightarrow \hspace{0.3cm} p_{\rm B} = {\rm Q} \left( \sqrt{ s_0^2 /
 
\sigma _d ^2} \right)=  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)
 
\sigma _d ^2} \right)=  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)
\hspace{0.05cm}.</math>
+
.$$
 
+
<br clear=all>
  
 
== Interpretation des optimalen Empfängers ==
 
== Interpretation des optimalen Empfängers ==
 
<br>
 
<br>
In diesem Abschnitt wurde gezeigt, dass mit einem Empfänger, bestehend aus linearem Empfangsfilter und nichtlinearem Entscheider, die kleinstmögliche Bitfehlerwahrscheinlichkeit zu erreichen ist::
+
In diesem Abschnitt wurde gezeigt,&nbsp; dass mit einem Empfänger,&nbsp; bestehend aus linearem Empfangsfilter und nichtlinearem Entscheider,&nbsp; die kleinstmögliche Bitfehlerwahrscheinlichkeit zu erreichen ist:
<math> p_{\rm B, \hspace{0.05cm}min} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)
+
:$$ p_{\rm B, \hspace{0.05cm}min} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)
  = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{ E_{\rm B}}/{N_0}}\right) \hspace{0.05cm}.</math>
+
  = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{ E_{\rm B}}/{N_0}}\right) \hspace{0.05cm}.$$
Die sich ergebende Konfiguration ist ein Sonderfall des sog. Maximum&ndash;Aposteriori&ndash;Empfängers (MAP), der im [http://www.lntwww.de/Digitalsignal%C3%BCbertragung/Optimale_Empf%C3%A4ngerstrategien#Betrachtetes_Szenario_im_Kapitel_3.7 Kapitel 3.7] dieses Buches behandelt wird.
+
Die sich ergebende Konfiguration ist ein Sonderfall des so genannten&nbsp; '''Maximum&ndash;Aposteriori&ndash;Empfängers'''&nbsp; $\rm (MAP)$,&nbsp; der im Abschnitt &nbsp;[[Digitalsignalübertragung/Optimale_Empfängerstrategien|Optimale Empfängerstrategien]]&nbsp;  im dritten Hauptkapitel dieses Buches behandelt wird.
Für die Gültigkeit obiger Gleichung müssen allerdings eine Reihe von Voraussetzungen erfüllt sein::
+
 
*Das Sendesignal <i>s</i>(<i>t</i>) ist binär sowie bipolar (antipodisch) und weist pro Bit die (mittlere) Energie <i>E</i><sub>B</sub> auf. Die (mittlere) Sendeleistung ist somit <i>E</i><sub>B</sub>/<i>T</i>.
+
Für die Gültigkeit obiger Gleichung müssen allerdings eine Reihe von Voraussetzungen erfüllt sein:
*Es liegt ein AWGN&ndash;Kanal (<i>Additive White Gaussian Noise</i>) mit der konstanten (einseitigen) Rauschleistungsdichte <i>N</i><sub>0</sub> vor.
+
*Das Sendesignal &nbsp;$s(t)$&nbsp; ist binär sowie bipolar&nbsp; (antipodisch)&nbsp; und weist pro Bit die&nbsp; (mittlere)&nbsp; Energie &nbsp;$E_{\rm B}$&nbsp; auf.&nbsp; Die&nbsp; (mittlere)&nbsp; Sendeleistung ist somit $E_{\rm B}/T$.
*Das Empfangsfilter <i>H</i><sub>E</sub>(<i>f</i>) ist bestmöglich an das Sendegrundimpulsspektrum <i>G</i><sub><i>s</i></sub>(<i>f</i>) entsprechend dem Matched&ndash;Filter&ndash;Kriterium angepasst.
+
 
*Der Entscheider (Schwellenwert, Detektionszeitpunkte) sei optimal. Eine kausale Realisierung des Matched&ndash;Filters kann man durch Verschiebung des Detektionszeitpunktes ausgleichen.
+
*Es liegt ein AWGN&ndash;Kanal&nbsp; ("Additive White Gaussian Noise")&nbsp; mit der konstanten&nbsp; (einseitigen)&nbsp; Rauschleistungsdichte &nbsp;$N_0$&nbsp; vor.
*Obige Gleichung gilt unabhängig vom Sendegrundimpuls <i>g</i><sub><i>s</i></sub>(<i>t</i>). Allein die für die Übertragung eines Binärsymbols aufgewendete Energie <i>E</i><sub>B</sub> ist entscheidend für die Fehlerwahrscheinlichkeit.
+
 
*Voraussetzung für die Anwendbarkeit obiger Gleichung ist, dass die Detektion eines Symbols nicht durch andere Symbole beeinträchtigt wird. Solche Impulsinterferenzen vergrößern <i>p</i><sub>B</sub> enorm.
+
*Das Empfangsfilter &nbsp;$H_{\rm E}(f)$&nbsp; ist bestmöglich an das Sendegrundimpulsspektrum &nbsp;$G_s(f)$&nbsp; entsprechend dem&nbsp; &bdquo;Matched&ndash;Filter&ndash;Kriterium&rdquo;&nbsp; angepasst.
*Ist die absolute Sendeimpulsdauer <i>T</i><sub>S</sub> kleiner oder gleich dem Symbolabstand <i>T</i>, so ist obige Gleichung bei Erfüllung des Matched-Filter-Kriteriums immer anwendbar.
 
*Die Gleichung gilt auch für Nyquistsysteme, bei denen zwar <i>T</i><sub>S</sub> > <i>T</i> gilt, es aber aufgrund von äquidistanten Nulldurchgängen des Grundimpulses <i>g</i><sub><i>d</i></sub>(<i>t</i>) nicht zu Impulsinterferenzen kommt.
 
  
 +
*Der Entscheider&nbsp; (Schwellenwert, Detektionszeitpunkte)&nbsp; ist optimal.&nbsp; Eine kausale Realisierung des Matched&ndash;Filters kann man durch Verschiebung des Detektionszeitpunktes ausgleichen.
  
== Aufgaben ==
+
*Obige Gleichung gilt unabhängig vom Sendegrundimpuls &nbsp;$g_s(t)$.&nbsp; Allein die für die Übertragung eines Binärsymbols aufgewendete Energie &nbsp;$E_{\rm B}$&nbsp; ist neben der Rauschleistungsdichte &nbsp;$N_0$&nbsp; entscheidend für die Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$.
[[Aufgaben:1.2 Bitfehlerquote (BER)|A1.2 Bitfehlerquote (BER)]]
 
  
[[Zusatzaufgaben:1.2 Bitfehlermessung]]
+
*Voraussetzung für die Anwendbarkeit obiger Gleichung ist,&nbsp; dass die Detektion eines Symbols nicht durch andere Symbole beeinträchtigt wird.&nbsp; Solche &nbsp;[[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]]&nbsp; vergrößern die Bitfehlerwahrscheinlichkeit &nbsp;$p_{\rm B}$&nbsp; enorm.
  
[[Aufgaben:1.3 Einfluss von g<sub>s</sub>(t) und h<sub>E</sub>(t)|A1.3 Einfluss von g<sub>s</sub>(t) und h<sub>E</sub>(t)|]]
+
*Ist die absolute Sendeimpulsdauer &nbsp;$T_{\rm S}$&nbsp; kleiner oder gleich dem Symbolabstand &nbsp;$T$,&nbsp; so ist obige Gleichung bei Erfüllung des Matched-Filter-Kriteriums immer anwendbar.
 +
 
 +
*Die Gleichung gilt auch für Nyquistsysteme,&nbsp; bei denen zwar &nbsp;$T_{\rm S} > T$&nbsp; gilt,&nbsp; es aber aufgrund von äquidistanten Nulldurchgängen des Grundimpulses &nbsp;$g_d(t)$&nbsp; nicht zu Impulsinterferenzen kommt.&nbsp; Damit beschäftigen wir uns im nächsten Kapitel.
 +
 
 +
 
 +
== Aufgaben zum Kapitel==
 +
<br>
 +
[[Aufgaben:1.2_Bitfehlerquote_(BER)|Aufgabe 1.2: Bitfehlerquote (BER)]]
  
[[Zusatzaufgaben:1.3 Schwellenwertoptimierung]]
+
[[Aufgaben:1.2Z_Bitfehlermessung|Aufgabe 1.2Z: Bitfehlermessung]]
  
 +
[[Aufgaben:1.3_Rechteckfunktionen_für_Sender_und_Empfänger|Aufgabe 1.3: Rechteckfunktionen für Sender und Empfänger]]
  
 +
[[Aufgaben:1.3Z_Schwellenwertoptimierung|Aufgabe 1.3Z: Schwellenwertoptimierung]]
  
 +
==Quellenverzeichnis==
  
 +
<references/>
  
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 22. Juni 2022, 14:03 Uhr

Definition der Bitfehlerwahrscheinlichkeit


Zur Definition der Bitfehlerwahrscheinlichkeit

Die Grafik zeigt ein sehr einfaches,  aber allgemeingültiges Modell eines binären Übertragungssystems.  Dieses lässt sich wie folgt charakterisieren:

  • Quelle und Sinke werden durch die beiden Binärfolgen  $〈q_ν〉$  und  $〈v_ν〉$  beschrieben.
  • Das gesamte Übertragungsystem,  bestehend aus
  1. Sender,
  2. Übertragungskanal inklusive Störungen und
  3. Empfänger,


wird als „Black Box” mit binärem Eingang und binärem Ausgang betrachtet.

  • Dieser „Digitale Kanal” wird allein durch die Fehlerfolge $〈e_ν〉$ charakterisiert.
  • Bei fehlerfreier Übertragung des $\nu$–ten Bits  $(v_ν = q_ν)$  gilt  $e_ν= 0$,
    andernfalls  $(v_ν \ne q_ν)$  wird  $e_ν= 1$  gesetzt.


$\text{Definition:}$  Die  (mittlere)  Bitfehlerwahrscheinlichkeit  ist bei einem Binärsystem wie folgt gegeben:

$$p_{\rm B} = {\rm E}\big[{\rm Pr}(v_{\nu} \ne q_{\nu})\big]= \overline{ {\rm Pr}(v_{\nu} \ne q_{\nu}) } = \lim_{N \to\infty}\frac{1}{N}\cdot\sum\limits_{\nu=1}^{N}{\rm Pr}(v_{\nu} \ne q_{\nu})\hspace{0.05cm}.$$

Diese statistische Größe ist das wichtigste Beurteilungskriterium eines jeden Digitalsystems.


  • Die Berechnung als Erwartungswert  $\rm E[\text{...}]$  gemäß dem ersten Teil der obigen Gleichung entspricht einer Scharmittelung über die Verfälschungswahrscheinlichkeit  ${\rm Pr}(v_{\nu} \ne q_{\nu})$  des  $\nu$–ten Symbols,  während die überstreichende Linie im rechten Gleichungsteil eine Zeitmittelung kennzeichnet.
  • Beide Berechnungsarten führen – unter der gerechtfertigten Annahme ergodischer Prozesse – zum gleichen Ergebnis,  wie im vierten Hauptkapitel  „Zufallsgrößen mit statistischen Bindungen”  des Buches  Stochastische Signaltheorie  gezeigt wurde.
  • Auch aus der Fehlerfolge  $〈e_ν〉$  lässt sich die Bitfehlerwahrscheinlichkeit als Erwartungswert bestimmen,  wobei zu berücksichtigen ist,  dass die Fehlergröße  $e_ν$  nur die Werte  $0$  und  $1$  annehmen kann:
$$\it p_{\rm B} = \rm E\big[\rm Pr(\it e_{\nu}=\rm 1)\big]= {\rm E}\big[{\it e_{\nu}}\big]\hspace{0.05cm}.$$
  • Die obige Definition der Bitfehlerwahrscheinlichkeit gilt unabhängig davon,  ob es statistische Bindungen innerhalb der Fehlerfolge  $〈e_ν〉$  gibt oder nicht.  Je nachdem muss man bei einer Systemsimulation unterschiedliche digitale Kanalmodelle verwenden.  Der Aufwand zur  $p_{\rm B}$–Berechnung hängt hiervon ab.


Im fünften Hauptkapitel wird gezeigt, dass das so genannte  BSC–Modell  ("Binary Symmetrical Channel")  statistisch unabhängige Fehler liefert,  während für die Beschreibung von Bündelfehlerkanälen auf die Modelle von  Gilbert–Elliott  [Gil60][1] und von  McCullough  [McC68][2] zurückgegriffen werden muss.


Definition der Bitfehlerquote


Die Bitfehlerwahrscheinlichkeit eignet sich zum Beispiel gut für die Konzipierung und Optimierung von Digitalsystemen.  Diese ist eine  "Apriori-Kenngröße",  die eine Vorhersage über das Fehlerverhalten eines Nachrichtensystems erlaubt,  ohne dass dieses bereits realisiert sein muss.

Dagegen muss zur messtechnischen Erfassung der Qualität eines realisierten Systems oder bei einer Systemsimulation auf die Bitfehlerquote übergegangen werden,  die durch den Vergleich von Quellensymbolfolge  $〈q_ν〉$  und Sinkensymbolfolge  $〈v_ν〉$  ermittelt wird.  Diese ist somit eine  "Aposteriori-Kenngröße"  des Systems.

$\text{Definition:}$  Die  Bitfehlerquote  $($englisch:  "Bit Error Rate",  $\rm BER)$  ist das Verhältnis aus der Anzahl  $n_{\rm B}(N)$  der aufgetretenen Bitfehler  $(v_ν \ne q_ν)$  und der Anzahl  $N$  der insgesamt übertragenen Symbole:

$$h_{\rm B}(N) = \frac{n_{\rm B}(N)}{N} \hspace{0.05cm}.$$

Im Sinne der Wahrscheinlichkeitsrechnung ist die Bitfehlerquote eine  relative Häufigkeit;  sie wird deshalb auch  "Bitfehlerhäufigkeit"  genannt.


  • Die Schreibweise  $h_{\rm B}(N)$  soll deutlich machen,  dass die per Messung oder durch Simulation ermittelte Bitfehlerquote signifikant vom Parameter  $N$ – also der Anzahl der insgesamt übertragenen oder simulierten Symbole – abhängt.
  • Nach den elementaren Gesetzen der Wahrscheinlichkeitsrechnung stimmt nur im Grenzfall  $N \to \infty$  die Aposteriori–Kenngröße  $h_{\rm B}(N)$  mit der Apriori–Kenngröße  $p_{\rm B}$  exakt überein.

Der Zusammenhang zwischen Wahrscheinlichkeit und relativer Häufigkeit wird im Lernvideo Bernoullisches Gesetz der großen Zahlen verdeutlicht.


Bitfehlerwahrscheinlichkeit und Bitfehlerquote beim BSC-Modell


Für die nachfolgenden Herleitungen wird das BSC–Modell  ("Binary Symmetric Channel")  zugrunde gelegt,  das in   Kapitel 5.2  im Detail beschrieben wird.

  • Jedes Bit wird mit der Wahrscheinlichkeit  $p = {\rm Pr}(v_{\nu} \ne q_{\nu}) = {\rm Pr}(e_{\nu} = 1)$  verfälscht,  unabhängig von den Fehlerwahrscheinlichkeiten der benachbarten Symbole.
  • Die  (mittlere)  Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  ist somit ebenfalls gleich  $p$.


Nun wird abgeschätzt,  wie genau beim BSC-Modell die Bitfehlerwahrscheinlichkeit  $p_{\rm B} = p$  durch die Bitfehlerquote  $h_{\rm B}(N)$  approximiert wird:

  • Die Anzahl der Bitfehler bei der Übertragung von  $N$  Symbolen ist eine diskrete Zufallsgröße:
$$n_{\rm B}(N) = \sum\limits_{\it \nu=\rm 1}^{\it N} e_{\nu} \hspace{0.2cm} \in \hspace{0.2cm} \{0, 1, \hspace{0.05cm}\text{...} \hspace{0.05cm} , N \}\hspace{0.05cm}.$$
  • Bei statistisch unabhängigen Fehlern  ("BSC–Modell")  ist  $n_{\rm B}(N)$  binominalverteilt. Demzufolge gilt für Mittelwert und Streuung dieser Zufallsgröße:
$$m_{n{\rm B}}=N \cdot p_{\rm B},\hspace{0.2cm}\sigma_{n{\rm B}}=\sqrt{N\cdot p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}\hspace{0.05cm}.$$
  • Für Mittelwert und Streuung der Bitfehlerquote  $h_{\rm B}(N)= n_{\rm B}(N)/N$  gilt deshalb:\[m_{h{\rm B}}= \frac{m_{n{\rm B}}}{N} = p_{\rm B}\hspace{0.05cm},\hspace{0.2cm}\sigma_{h{\rm B}}= \frac{\sigma_{n{\rm B}}}{N}= \sqrt{\frac{ p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}{N}}\hspace{0.05cm}.\]
  • Nach  Moivre  und  Laplace  kann aber die Binominalverteilung näherungsweise durch eine Gaußverteilung approximiert werden:
$$f_{h{\rm B}}({h_{\rm B}}) \approx \frac{1}{\sqrt{2\pi}\cdot\sigma_{h{\rm B}}}\cdot {\rm e}^{-(h_{\rm B}-p_{\rm B})^2/(2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sigma_{h{\rm B}}^2)}.$$
  • Mit dem  Gaußschen Fehlerintergal  ${\rm Q}(x)$  lässt sich so die Wahrscheinlichkeit  $p_\varepsilon$  berechnen,  dass die per Simulation/Messung über  $N$  Symbole ermittelte Bitfehlerquote  $h_{\rm B}(N)$  betragsmäßig um weniger als einen Wert  $\varepsilon$  von der tatsächlichen Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  abweicht:
$$p_{\varepsilon}= {\rm Pr} \left( |h_{\rm B}(N) - p_{\rm B}| < \varepsilon \right) = 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon}{\sigma_{h{\rm B}}} \right)= 1 -2 \cdot {\rm Q} \left( \frac{\varepsilon \cdot \sqrt{N}}{\sqrt{p_{\rm B} \cdot (1-p_{\rm B})}} \right)\hspace{0.05cm}.$$

$\text{Fazit:}$  Dieses Ergebnis ist wie folgt zu interpretieren:

  1. Führt man unendlich viele Versuchsreihen über jeweils  $N$  Symbole durch,  ist der Mittelwert  $m_{h{\rm B} }$  tatsächlich gleich der gesuchten Bitfehlerwahrscheinlichkeit.
  2. Bei nur einer Versuchsreihe erhält man dagegen nur eine Näherung,  wobei die jeweilige Abweichung vom Sollwert bei mehreren Versuchsreihen gaußverteilt ist.


$\text{Beispiel 1:}$  Die Bitfehlerwahrscheinlichkeit betrage  $p_{\rm B}= 10^{-3}$  und es ist bekannt,  dass die Bitfehler statistisch unabhängig sind.

  • Macht man nun sehr viele Versuchsreihen mit jeweils  $N= 10^{5}$  Symbolen,  so werden die jeweiligen Ergebnisse  $h_{\rm B}(N)$  entsprechend einer Gaußverteilung um den Sollwert  $10^{-3}$  variieren.  Die Streuung beträgt dabei  $\sigma_{h{\rm B} }= \sqrt{ { p_{\rm B}\cdot (\rm 1- \it p_{\rm B})}/{N} }\approx 10^{-4}\hspace{0.05cm}.$
  • Die Wahrscheinlichkeit,  dass die relative Häufigkeit einen Wert zwischen  $0.9 \cdot 10^{-3}$  und  $1.1 \cdot 10^{-3}$  haben wird   $(\varepsilon=10^{-4})$,  ist somit gleich
$$p_{\varepsilon} = 1 - 2 \cdot {\rm Q} \left({\varepsilon}/{\sigma_{h{\rm B} } } \right )= 1 - 2 \cdot {\rm Q} (1) \approx 68.4\%.$$
  • Soll die Genauigkeit auf  $95\%$  gesteigert werden,  so wären  $N = 400\hspace{0.05cm}000$  Symbole erforderlich.


Fehlerwahrscheinlichkeit bei Gaußschem Rauschen


Entsprechend den   Voraussetzungen zu diesem Kapitel  gehen wir von folgenden Annahmen aus:

Fehlerwahrscheinlichkeit bei Gaußschem Rauschen
  • Das Detektionssignal zu den Detektionszeitpunkten kann wie folgt dargestellt werden:  
$$ d(\nu T) = d_{\rm S}(\nu T)+d_{\rm N}(\nu T)\hspace{0.05cm}. $$
  • Der Nutzanteil wird durch die Wahrscheinlichkeitsdichtefunktion (WDF)  $f_{d{\rm S}}(d_{\rm S}) $  beschrieben,  wobei wir hier von unterschiedlichen Auftrittswahrscheinlichkeiten ausgehen.
$$p_{\rm L} = {\rm Pr}(d_{\rm S} = -s_0),\hspace{0.5cm}p_{\rm H} = {\rm Pr}(d_{\rm S} = +s_0)= 1-p_{\rm L}.$$
  • Die WDF  $f_{d{\rm N}}(d_{\rm N})$  der Störkomponente sei gaußförmig und besitze die Streuung  $\sigma_d$.


Unter der Voraussetzung,  dass  $d_{\rm S}(\nu T)$  und  $d_{\rm N}(\nu T)$  statistisch unabhängig voneinander sind  („signalunabhängiges Rauschen”),  ergibt sich die WDF  $f_d(d) $  der Detektionsabtastwerte  $d(\nu T)$  als das Faltungsprodukt

$$f_d(d) = f_{d{\rm S}}(d_{\rm S}) \star f_{d{\rm N}}(d_{\rm N})\hspace{0.05cm}.$$

Der Schwellenwertentscheider mit der Schwelle  $E = 0$  trifft immer dann eine falsche Entscheidung,  wenn

  • das Symbol  $\rm L$  gesendet wurde  $(d_{\rm S} = -s_0)$ und  $d > 0$  ist (rote schraffierte Fläche), oder
  • das Symbol  $\rm H$  gesendet wurde  $(d_{\rm S} = +s_0)$ und  $d < 0$  ist (blaue schraffierte Fläche).


Da die Flächen der roten und der blauen Gaußkurven zusammen  $1$  ergeben,  gibt die Summe aus der rot und der blau schraffierten Fläche die Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  an.  Die beiden grün schraffierten Flächen in der oberen Wahrscheinlichkeitsdichtefunktion  $f_{d{\rm N}}(d_{\rm N})$  sind – jede für sich – ebenfalls gleich  $p_{\rm B}$.

Die anhand der Grafik veranschaulichten Ergebnisse sollen nun formelmäßig hergeleitet werden.  Ausgegangen wird von der Gleichung

$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( v_\nu = \mathbf{H}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{L})+ p_{\rm H} \cdot {\rm Pr}(v_\nu = \mathbf{L}\hspace{0.1cm}|\hspace{0.1cm} q_\nu = \mathbf{H})\hspace{0.05cm}.$$
  • Hierbei sind  $p_{\rm L} $  und  $p_{\rm H} $  die Quellensymbolwahrscheinlichkeiten.  Die jeweils zweiten  (bedingten)  Wahrscheinlichkeiten  $ {\rm Pr}( v_\nu \hspace{0.05cm}|\hspace{0.05cm} q_\nu)$  beschreiben die Verfälschungen durch den AWGN–Kanal.  Aus der Entscheidungsregel des Schwellenwertentscheiders  $($mit Schwelle  $E = 0)$  ergibt sich auch:
$$p_{\rm B} = p_{\rm L} \cdot {\rm Pr}( d(\nu T)>0)+ p_{\rm H} \cdot {\rm Pr}( d(\nu T)<0) =p_{\rm L} \cdot {\rm Pr}( d_{\rm N}(\nu T)>+s_0)+ p_{\rm H} \cdot {\rm Pr}( d_{\rm N}(\nu T)<-s_0) \hspace{0.05cm}.$$
  • Die beiden Überschreitungswahrscheinlichkeiten in obiger Gleichung sind aufgrund der Symmetrie der Gaußschen WDF  $f_{d{\rm N}}(d_{\rm N})$  gleich.  Es gilt:
$$p_{\rm B} = (p_{\rm L} + p_{\rm H}) \cdot {\rm Pr}( d_{\rm N}(\nu T)>s_0) = {\rm Pr}( d_{\rm N}(\nu T)>s_0)\hspace{0.05cm}.$$
Das bedeutet:   $p_{\rm B}$  hängt bei einem Binärsystem mit der Schwelle  $E = 0$  nicht von den Symbolwahrscheinlichkeiten  $p_{\rm L} $  und  $p_{\rm H} = 1- p_{\rm L}$  ab.
  • Die Wahrscheinlichkeit,  dass der AWGN–Rauschterm  $d_{\rm N}$  mit Streuung  $\sigma_d$  größer ist als die NRZ–Sendeimpulsamplitude  $s_0$,  ergibt sich damit zu:
$$p_{\rm B} = \int_{s_0}^{+\infty}f_{d{\rm N}}(d_{\rm N})\,{\rm d} d_{\rm N} = \frac{\rm 1}{\sqrt{2\pi} \cdot \sigma_d}\int_{ s_0}^{+\infty}{\rm e} ^{-d_{\rm N}^2/(2\sigma_d^2) }\,{\rm d} d_{\rm N}\hspace{0.05cm}.$$
  • Unter Verwendung des komplementären Gaußschen Fehlerintegrals  ${\rm Q}(x)$  lautet das Ergebnis:
$$p_{\rm B} = {\rm Q} \left( \frac{s_0}{\sigma_d}\right)\hspace{0.4cm}{\rm mit}\hspace{0.4cm}\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
  • Häufig wird anstelle von  ${\rm Q}(x)$  die vergleichbare komplementäre  "Error Function"  ${\rm erfc}(x)$  verwendet.  Mit dieser gilt:
$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} \left( \frac{s_0}{\sqrt{2}\cdot \sigma_d}\right)\hspace{0.4cm}{\rm mit}\hspace{0.4cm} {\rm erfc} (\it x) = \frac{\rm 2}{\sqrt{\rm \pi}}\int_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}}\,d \it u \hspace{0.05cm}.$$

Beide Funktionen findet man in Formelsammlungen in tabellarischer Form.  Sie können zur Berechnung der Funktionswerte von  ${\rm Q}(x)$  und  $1/2 \cdot {\rm erfc}(x)$  aber auch unser interaktives HTML 5/JavaScript–Applet  Komplementäre Gaußsche Fehlerfunktionen  benutzen.

$\text{Beispiel 2:}$  Für das Folgende wird vorausgesetzt,  dass Tabellen zur Verfügung stehen,  in denen das Argument der Gaußschen Fehlerfunktionen im Abstand  $0.1$  aufgelistet sind.

Mit  $s_0/\sigma_d = 4$  erhält man für die Bitfehlerwahrscheinlichkeit gemäß der Q–Funktion:

$$p_{\rm B} = {\rm Q} (4) = 0.317 \cdot 10^{-4}\hspace{0.05cm}.$$

Nach der zweiten Gleichung ergibt sich:

$$p_{\rm B} = {1}/{2} \cdot {\rm erfc} ( {4}/{\sqrt{2} })= {1}/{2} \cdot {\rm erfc} ( 2.828)\approx {1}/{2} \cdot {\rm erfc} ( 2.8)= 0.375 \cdot 10^{-4}\hspace{0.05cm}.$$
  • Richtig ist der erste Wert.  Bei der zweiten Berechnungsart muss man runden oder – noch besser – interpolieren,  was aufgrund der starken Nichtlinearität dieser Funktion sehr schwierig ist.
  • Bei den gegebenen Zahlenwerten ist demnach die Q–Funktion besser geeignet.  Außerhalb von Übungsbeispielen wird  $s_0/\sigma_d$  in der Regel einen „krummen” Wert besitzen.  In diesem Fall bietet die Q–Funktion natürlich keinen Vorteil gegenüber  ${\rm erfc}(x)$.

Optimaler Binärempfänger - Realisierung mit Matched-Filter


Wir gehen weiter von den  vorne festgelegten Voraussetzungen  aus.

Optimaler Binärempfänger (Matched-Filter-Variante)
  • Dann kann man für den Frequenzgang und die Impulsantwort des Empfängerfilters ansetzen:
$$H_{\rm E}(f) = {\rm si}(\pi f T)= {\rm sinc}(f T),$$
$$H_{\rm E}(f) \hspace{0.4cm}\bullet\!\!-\!\!\!-\!\!\!-\!\!\circ \hspace{0.4cm} h_{\rm E}(t) = \left\{ \begin{array}{c} 1/T \\ 1/(2T) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |\hspace{0.05cm}t\hspace{0.05cm}|< T/2 \hspace{0.05cm},\\ |\hspace{0.05cm}t\hspace{0.05cm}|= T/2 \hspace{0.05cm},\\ |\hspace{0.05cm}t\hspace{0.05cm}|>T/2 \hspace{0.05cm}. \\ \end{array}$$
  • Aufgrund der Linearität kann für den Signalanteil des Detektionssignal geschrieben werden:
$$d_{\rm S}(t) = \sum_{(\nu)} a_\nu \cdot g_d ( t - \nu \cdot T)\hspace{0.2cm}{\rm mit}\hspace{0.2cm}g_d(t) = g_s(t) \star h_{\rm E}(t) \hspace{0.05cm}.$$
  • Die Faltung zweier Rechtecke gleicher Breite  $T$  und Höhe  $s_0$  ergibt einen dreieckförmigen Detektionsgrundimpuls  $g_d(t)$. 
  • Dabei ist  $g_d(t = 0) = s_0$.  Wegen  $g_d(|t| \ge T/2) = 0$  ist das System impulsinterferenzfrei   ⇒   es gilt  $d_{\rm S}(\nu T)= \pm s_0$.
  • Die Varianz des Detektionsstörsignals  $d_{\rm N}(t)$ – also die  "Detektionsstörleistung"  – lautet:
$$\sigma _d ^2 = \frac{N_0 }{2} \cdot \int_{ - \infty }^{ + \infty } {\left| {H_{\rm E}( f )} \right|^2 \hspace{0.1cm}{\rm{d}}f} = \frac{N_0 }{2} \cdot \int_{- \infty }^{+ \infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f = \frac{N_0 }{2T} \hspace{0.05cm}.$$
  • Damit ergeben sich für die  Bitfehlerwahrscheinlichkeit  entsprechend der letzten Seite die beiden äquivalenten Gleichungen:
$$p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot s_0^2 \cdot T}{N_0}}\right)= {\rm Q} \left( \sqrt{\rho_d}\right)\hspace{0.05cm},\hspace{0.5cm} p_{\rm B} = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{ s_0^2 \cdot T}/{N_0}}\right)= {1}/{2}\cdot {\rm erfc}\left( \sqrt{{\rho_d}/{2}}\right) \hspace{0.05cm}.$$

$\text{Definition:}$  Verwendet ist das momentane  Signal–zu–Stör–Leistungsverhältnis  $\rm (SNR)$  $\rho_d$   des Detektionssignals  $d(t)$  zu den Zeiten  $\nu T$, kurz Detektions–SNR:

$$\rho_d = \frac{d_{\rm S}^2(\nu T)}{ {\rm E}\big[d_{\rm N}^2(\nu T)\big ]}= \frac{s_0^2}{\sigma _d ^2} \hspace{0.05cm}.$$


Ein Vergleich dieses Ergebnisses mit der Seite   Optimierungskriterium des Matched-Filters  im Buch „Stochastische Signaltheorie” zeigt,  dass das Empfangsfilter  $H_{\rm E}(f)$  ein an den Sendegrundimpuls  $g_s(t)$  angepasstes Matched–Filter ist:

$$H_{\rm E}(f) = H_{\rm MF}(f) = K_{\rm MF}\cdot G_s^*(f)\hspace{0.05cm}.$$

Gegenüber der Seite   Matched–Filter–Optimierung  sind hier folgende Modifikationen berücksichtigt:

  • Die Matched–Filter–Konstante ist hier zu  $K_{\rm MF} = 1/(s_0 \cdot T)$  gesetzt.  Damit ist der Frequenzgang  $ H_{\rm MF}(f)$  dimensionslos.
  • Der im allgemeinen frei wählbare Detektionszeitpunkt ist hier zu  $T_{\rm D} = 0$  festgelegt.  Damit ergibt sich allerdings ein akausales Filter.
  • Das Detektions–SNR kann für jeden beliebigen Sendegrundimpuls  $g_s(t)$  mit Spektrum  $G_s(f)$  wie folgt dargestellt werden,  wobei sich die rechte Identität aus dem  Parsevalschen Theorem  ergibt:
$$\rho_d = \frac{2 \cdot E_{\rm B}}{N_0}\hspace{0.4cm}{\rm mit}\hspace{0.4cm} E_{\rm B} = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = \int^{+\infty} _{-\infty} |G_s(f)|^2\,{\rm d}f\hspace{0.05cm}.$$
  • $E_{\rm B}$  wird oft als  "Energie pro Bit"  bezeichnet und  $E_{\rm B}/N_0$ – fälschlicherweise – als  $\rm SNR$.  Wie aus der letzten Gleichung ersichtlich ist, unterscheidet sich nämlich bei binärer Basisbandübertragung  $E_{\rm B}/N_0$  vom Detektions–SNR  $\rho_d$  um den Faktor  $2$.


$\text{Fazit:}$  Die hier hergeleitete Bitfehlerwahrscheinlichkeit des optimalen Binärempfängers bei bipolarer Signalisierung kann man somit auch wie folgt schreiben:

$$p_{\rm B} = {\rm Q} \left( \sqrt{ {2 \cdot E_{\rm B} }/{N_0} }\right)= {1}/{2} \cdot{\rm erfc} \left( \sqrt{ {E_{\rm B} }/{N_0} }\right) \hspace{0.05cm}.$$

Diese Gleichung gilt sowohl für die Realisierung mit Matched-Filter als auch für die Realisierungsform „Integrate & Dump”  (siehe nächste Seite).


Zur Verdeutlichung der hier behandelten Thematik weisen wir auf unser Interaktionsmodul  Zur Verdeutlichung des Matched-Filters  hin.

Optimaler Binärempfänger – Realisierungsform „Integrate & Dump”


Bei rechteckförmigen NRZ–Sendeimpulsen kann das Matched–Filter auch als Integrator  $($jeweils über eine Symboldauer  $T)$  realisiert werden.  Damit gilt für das Detektionssignal zu den Detektionszeitpunkten:

Signale beim MF– und beim I&E–Empfänger
$$d(\nu \cdot T + T/2) = \frac {1}{T} \cdot \int^{\nu \cdot T + T/2} _{\nu \cdot T - T/2} r(t)\,{\rm d}t \hspace{0.05cm}.$$

Die Grafik verdeutlicht die Unterschiede bei der Realisierung des optimalen Binärempfängers

  • mit Matched–Filter $\rm (MF)$   ⇒   mittlere Skizze, bzw.
  • als „Integrate & Dump” $\rm (I\&D)$   ⇒   untere Skizze.


Man erkennt aus diesen Signalverläufen:

  • Das Detektionsnutzsignal  $d_{\rm S}(t)$  ist zu den Detektionszeitpunkten   ⇒   gelbe Markierungen $\rm (MF$:   bei  $\nu \cdot T$,   $\rm I\&D$:   bei  $\nu \cdot T +T/2)$  in beiden Fällen gleich $\pm s_0$.
  • Die unterschiedlichen Detektionszeitpunkte sind darauf zurückzuführen, dass das Matched–Filter im Gegensatz zu „Integrate & Dump” als akausal angesetzt wurde (siehe letzte Seite).
  • Beim Matched–Filter–Empfänger ist die Detektionsstörleistung zu allen Zeiten  $t$  gleich:   ${\rm E}\big[d_{\rm N}^2(t)\big]= {\sigma _d ^2} = {\rm const.}$.  Dagegen nimmt beim I&D–Empfänger diese Varianz vom Symbolanfang bis zum Symbolende zu.
  • Zu den gelb markierten Zeitpunkten ist die Detektionsstörleistung in beiden Fällen gleich,  so dass sich die gleiche Bitfehlerwahrscheinlichkeit ergibt.  Mit  $E_{\rm B} = s_0^2 \cdot T$  gilt wieder:
$$\sigma _d ^2 = \frac{N_0}{2} \cdot \int_{- \infty }^{ +\infty } {\rm si}^2(\pi f T)\hspace{0.1cm}{\rm{d}}f = \frac{N_0}{2T} $$
$$\Rightarrow \hspace{0.3cm} p_{\rm B} = {\rm Q} \left( \sqrt{ s_0^2 / \sigma _d ^2} \right)= {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right) .$$


Interpretation des optimalen Empfängers


In diesem Abschnitt wurde gezeigt,  dass mit einem Empfänger,  bestehend aus linearem Empfangsfilter und nichtlinearem Entscheider,  die kleinstmögliche Bitfehlerwahrscheinlichkeit zu erreichen ist:

$$ p_{\rm B, \hspace{0.05cm}min} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right) = {1}/{2} \cdot {\rm erfc} \left( \sqrt{{ E_{\rm B}}/{N_0}}\right) \hspace{0.05cm}.$$

Die sich ergebende Konfiguration ist ein Sonderfall des so genannten  Maximum–Aposteriori–Empfängers  $\rm (MAP)$,  der im Abschnitt  Optimale Empfängerstrategien  im dritten Hauptkapitel dieses Buches behandelt wird.

Für die Gültigkeit obiger Gleichung müssen allerdings eine Reihe von Voraussetzungen erfüllt sein:

  • Das Sendesignal  $s(t)$  ist binär sowie bipolar  (antipodisch)  und weist pro Bit die  (mittlere)  Energie  $E_{\rm B}$  auf.  Die  (mittlere)  Sendeleistung ist somit $E_{\rm B}/T$.
  • Es liegt ein AWGN–Kanal  ("Additive White Gaussian Noise")  mit der konstanten  (einseitigen)  Rauschleistungsdichte  $N_0$  vor.
  • Das Empfangsfilter  $H_{\rm E}(f)$  ist bestmöglich an das Sendegrundimpulsspektrum  $G_s(f)$  entsprechend dem  „Matched–Filter–Kriterium”  angepasst.
  • Der Entscheider  (Schwellenwert, Detektionszeitpunkte)  ist optimal.  Eine kausale Realisierung des Matched–Filters kann man durch Verschiebung des Detektionszeitpunktes ausgleichen.
  • Obige Gleichung gilt unabhängig vom Sendegrundimpuls  $g_s(t)$.  Allein die für die Übertragung eines Binärsymbols aufgewendete Energie  $E_{\rm B}$  ist neben der Rauschleistungsdichte  $N_0$  entscheidend für die Bitfehlerwahrscheinlichkeit  $p_{\rm B}$.
  • Voraussetzung für die Anwendbarkeit obiger Gleichung ist,  dass die Detektion eines Symbols nicht durch andere Symbole beeinträchtigt wird.  Solche  Impulsinterferenzen  vergrößern die Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  enorm.
  • Ist die absolute Sendeimpulsdauer  $T_{\rm S}$  kleiner oder gleich dem Symbolabstand  $T$,  so ist obige Gleichung bei Erfüllung des Matched-Filter-Kriteriums immer anwendbar.
  • Die Gleichung gilt auch für Nyquistsysteme,  bei denen zwar  $T_{\rm S} > T$  gilt,  es aber aufgrund von äquidistanten Nulldurchgängen des Grundimpulses  $g_d(t)$  nicht zu Impulsinterferenzen kommt.  Damit beschäftigen wir uns im nächsten Kapitel.


Aufgaben zum Kapitel


Aufgabe 1.2: Bitfehlerquote (BER)

Aufgabe 1.2Z: Bitfehlermessung

Aufgabe 1.3: Rechteckfunktionen für Sender und Empfänger

Aufgabe 1.3Z: Schwellenwertoptimierung

Quellenverzeichnis

  1. Gilbert, E. N.:  Capacity of Burst–Noise Channel,  In: Bell Syst. Techn. J. Vol. 39, 1960, pp. 1253–1266.
  2. McCullough, R.H.:  The Binary Regenerative Channel,  In: Bell Syst. Techn. J. (47), 1968.