Mobile Kommunikation/Nichtfrequenzselektives Fading mit Direktkomponente: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(12 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 8: Zeile 8:
 
== Kanalmodell und Rice–WDF ==
 
== Kanalmodell und Rice–WDF ==
 
<br>
 
<br>
Die [http://www.lntwww.de/Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Allgemeine_Beschreibung_des_Mobilfunkkanals Rayleigh&ndash;Verteilung] beschreibt den Mobilfunkkanal unter der Annahme, dass kein direkter Pfad vorhanden ist und sich somit der multiplikative Faktor <i>z</i>(<i>t</i>) allein aus diffus gestreuten Komponenten zusammensetzt. Bei Vorhandensein einer Direktkomponente (englisch: <i>Line of Sight</i>, LoS) muss man im Modell zu den mittelwertfreien Gaußprozessen <i>x</i>(<i>t</i>) und <i>y</i>(<i>t</i>) noch Gleichkomponenten hinzufügen:
+
Die&nbsp; [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Allgemeine_Beschreibung_des_Mobilfunkkanals| Rayleigh&ndash;Verteilung]]&nbsp; beschreibt den Mobilfunkkanal unter der Annahme, dass kein direkter Pfad vorhanden ist und sich somit der multiplikative Faktor&nbsp; $z(t) = x(t) + {\rm j} \cdot y(t)$&nbsp; allein aus diffus gestreuten Komponenten zusammensetzt.
  
:<math>x(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} x(t) +x_0 \hspace{0.05cm}, \hspace{0.2cm} y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} y(t) +y_0\hspace{0.05cm},</math>
+
[[Datei:P ID2126 Mob T 1 4 S1 v3.png|right|frame|Rice-Fading-Kanalmodell|class=fit]]
  
:<math>z(t) = x(t) + {\rm j} \cdot y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} z(t) +z_0 \hspace{0.05cm},\hspace{0.2cm}
+
Bei Vorhandensein einer Direktkomponente&nbsp; $($englisch:&nbsp; <i>Line of Sight</i>,&nbsp; $\rm LoS)$&nbsp; muss man im Modell zu den mittelwertfreien Gaußprozessen&nbsp; $x(t)$&nbsp; und&nbsp; $y(t)$&nbsp; noch Gleichkomponenten&nbsp; $x_0$&nbsp; und/oder&nbsp; $y_0$&nbsp; hinzufügen:
z_0 = x_0 + {\rm j} \cdot y_0\hspace{0.05cm}.</math>
 
  
Die Grafik zeigt das Rice&ndash;Fading&ndash;Kanalmodell. Als Sonderfall ergibt sich daraus wieder  das Rayleigh&ndash;Modell, wenn man <i>x</i><sub>0</sub> = <i>y</i><sub>0</sub> = 0 setzt.<br>
+
::<math>x(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} x(t) +x_0 \hspace{0.05cm}, \hspace{0.2cm} y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} y(t) +y_0\hspace{0.05cm},</math>
  
[[Datei:P ID2126 Mob T 1 4 S1 v3.png|Rice-Fading-Kanalmodell|class=fit]]<br>
+
::<math>z(t) = x(t) + {\rm j} \cdot y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} z(t) +z_0 \hspace{0.05cm},\hspace{0.2cm}
 +
z_0 = x_0 + {\rm j} \cdot y_0\hspace{0.05cm}.</math>
  
Das Rice&ndash;Fading&ndash;Modell lässt sich wie folgt zusammenfassen:
+
Die Grafik zeigt dieses&nbsp; '''Rice&ndash;Fading&ndash;Kanalmodell'''.&nbsp; Als Sonderfall ergibt sich das Rayleigh&ndash;Modell, wenn man&nbsp; $x_0 = y_0= 0$&nbsp; setzt.<br>
*Der Realteil <i>x</i>(<i>t</i>) ist gaußverteilt (Mittelwert <i>x</i><sub>0</sub>, und Varianz <i>&sigma;</i><sup>2</sup>). Der Imaginärteil <i>y</i>(<i>t</i>) ist ebenfalls gaußverteilt (Mittelwert <i>y</i><sub>0</sub>, Varianz <i>&sigma;</i><sup>2</sup>)  sowie unabhängig von <i>x</i>(<i>t</i>).<br>
 
  
*Für <i>z</i><sub>0</sub> &ne; 0 ist der Betrag  |<i>z</i>(<i>t</i>)| [http://www.lntwww.de/Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung riceverteilt], woraus die Bezeichnung &bdquo;<i>Rice&ndash;Fading</i>&rdquo; herrührt. Zur Vereinfachung der Schreibweise setzen wir  |<i>z</i>(<i>t</i>)| = <i>a</i>(<i>t</i>). Für <i>a</i> &#8804; 0 ist die Betrags&ndash;WDF <i>f<sub>a</sub></i>(<i>a</i>) identisch 0, für <i>a</i> &#8805; 0 gilt folgende Gleichung für die Rice&ndash;WDF:
 
  
::<math>f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.</math>
+
Das Rice&ndash;Fading&ndash;Modell lässt sich wie folgt zusammenfassen, siehe auch&nbsp; [Hin08]<ref name = 'Hin08'>Hindelang, T.:&nbsp; Mobile Communications.&nbsp; Vorlesungsmanuskript.&nbsp; Lehrstuhl für Nachrichtentechnik,&nbsp; TU München, 2008.</ref>:
 +
*Der Realteil&nbsp; $x(t)$&nbsp; ist gaußverteilt mit Mittelwert&nbsp; $x_0$&nbsp; und Varianz&nbsp; $\sigma ^2$.
 +
*Der Imaginärteil&nbsp; $y(t)$&nbsp; ist ebenfalls gaußverteilt&nbsp; $($Mittelwert&nbsp; $y_0$,&nbsp; gleiche Varianz&nbsp; $\sigma ^2)$&nbsp;  sowie unabhängig von&nbsp; $x(t)$.<br>
  
:Hierbei bezeichnet I<sub>0</sub> die <i>modifizierte Bessel&ndash;Funktion</i> nullter Ordnung.
+
*Für&nbsp; $z_0 \ne 0$&nbsp; ist der Betrag&nbsp; $|z(t)|$&nbsp; [[Stochastische_Signaltheorie/Weitere_Verteilungen#Riceverteilung| riceverteilt]], woraus die Bezeichnung &bdquo;Rice&ndash;Fading&rdquo; herrührt.
 +
*Zur Vereinfachung der Schreibweise setzen wir&nbsp;  $|z(t)| = a(t)$.&nbsp; Für&nbsp; $a < 0$&nbsp; ist die Betrags&ndash;WDF&nbsp; $f_a(a) \equiv 0$,&nbsp; für&nbsp; $a \ge  0$ gilt folgende Gleichung, wobei&nbsp;  $\rm I_0(\cdot)$&nbsp; die&nbsp; ''modifizierte Bessel&ndash;Funktion nullter Ordnung''&nbsp; bezeichnet:
  
::<math>{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) =  
+
::<math>f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} \big [ -\frac{a^2 + |z_0|^2}{2\sigma^2}\big ] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.5cm}\text{mit}\hspace{0.5cm}{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) =  
 
  \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)}
 
  \hspace{0.05cm}.</math>
 
  \hspace{0.05cm}.</math>
  
*Der Mobilfunkkanal ist um so besser für die Digitalsignalübertragung geeignet, je größer die &bdquo;Direktpfadleistung&rdquo;  (|<i>z</i><sub>0</sub>|<sup>2</sup>) gegenüber den Leistungen der Streukomponenten (2<i>&sigma;</i><sup>2</sup>) ist.<br>
+
*Der Mobilfunkkanal ist um so besser für die Digitalsignalübertragung geeignet, je größer die &bdquo;Direktpfadleistung&rdquo;&nbsp$(|z_0|^2)$&nbsp;  gegenüber den Leistungen der Streukomponenten&nbsp; $(2\sigma^2)$&nbsp; ist.<br>
  
*Ist |<i>z</i><sub>0</sub>| >> <i>&sigma;</i> (Faktor 3 oder mehr), so  kann die Rice&ndash;WDF mit guter Näherung durch eine Gaußverteilung mit dem Mittelwert |<i>z</i><sub>0</sub>| und der Streuung <i>&sigma;</i> angenähert werden.<br>
+
*Ist&nbsp; $|z_0| \gg \sigma$&nbsp; $($Faktor &nbsp;$3$&nbsp; oder mehr$)$, so  kann die Rice&ndash;WDF mit guter Näherung durch eine Gaußverteilung mit Mittelwert&nbsp; $|z_0|$&nbsp; und Streuung&nbsp; $\sigma$&nbsp; angenähert werden.<br>
  
*Im Gegensatz zu <i>Rayleigh</i> (mit <i>z</i><sub>0</sub> = 0) ist die Phase bei <i>Rice&ndash;Fading</i> nicht gleichverteilt, sondern es gibt eine Vorzugsrichtung <i>&#981;</i><sub>0</sub> = arctan(<i>y</i><sub>0</sub>/<i>x</i><sub>0</sub>). Oft setzt man <i>y</i><sub>0</sub> = 0 &nbsp;&#8658;&nbsp; <i>&#981;</i><sub>0</sub> = 0.<br>
+
*Im Gegensatz zum Rayleigh&ndash;Fading &nbsp; &rArr; &nbsp; $z_0 \equiv 0$&nbsp; ist die Phase bei Rice&ndash;Fading nicht gleichverteilt, sondern es gibt eine Vorzugsrichtung&nbsp; $\phi_0 = \arctan(y_0/x_0)$. <br>Oft setzt man&nbsp; $y_0 = 0$ &nbsp; &#8658; &nbsp; $\phi_0  = 0$.<br>
  
== Beispielhafte Signalverläufe bei Rice–Fading (1) ==
+
== Beispielhafte Signalverläufe bei Rice–Fading==
 
<br>
 
<br>
Die Grafik zeigt Signalverläufe und Dichtefunktionen zweier Mobilfunkkanäle:
+
[[Datei:P ID2129 Mob T 1 4 S2 v1.png|right|frame|Vergleich von Rayleigh-Fading (blau) und Rice-Fading (rot)|class=fit]]
*Rayleigh&ndash;Fading mit E[|<i>z</i>(<i>t</i>)|<sup>2</sup>] = 2<i>&sigma;</i><sup>2</sup> = 1 (blaue Kurven),<br>
+
Die Grafik zeigt typische Signalverläufe und Dichtefunktionen zweier Mobilfunkkanäle:
 +
*Rayleigh&ndash;Fading&nbsp;  (blaue Kurven)&nbsp; mit&nbsp;
 +
:$${\rm E}\big [|z(t))|^2\big ] = 2 \cdot \sigma^2 = 1,$$
  
*Rice&ndash;Fading mit gleichem <i>&sigma;</i> sowie <i>x</i><sub>0</sub> = 0.707 und <i>y</i><sub>0</sub> = &ndash;0.707 (rote Kurven).<br><br>
+
*Rice&ndash;Fading&nbsp;  (rote Kurven)&nbsp; mit gleichem&nbsp; $\sigma$&nbsp; sowie&nbsp;
 +
:$$x_0 = 0.707,\ \ y_0 = -0.707.$$
  
Für die Erzeugung der Signalausschnitte mit dem auf der letzten Seite gezeigten Modell wurde in beiden Fällen die [http://www.lntwww.de/Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Dopplerfrequenz_und_deren_Verteilung_.281.29 maximale Dopplerfrequenz] <i>f</i><sub>D,&nbsp;max</sub> = 100 Hz zugrundegelegt. AKF und LDS von Rayleigh&ndash; und Rice&ndash;Fading unterscheiden sich nur geringfügig. Es gilt:
+
Für die Erzeugung der Signalausschnitte nach obigem Modell liegt jeweils die&nbsp; [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#Dopplerfrequenz_und_deren_Verteilung| maximale Dopplerfrequenz]]&nbsp; $f_\text{D, max} = 100 \ \rm Hz$&nbsp; zugrunde.  
  
:<math>\varphi_z ({\rm \Delta}t)\Bigg |_{\hspace{0.1cm}{\rm Rice}} \hspace{-0.1cm}  = \hspace{-0.1cm} \varphi_z ({\rm \Delta}t)\Bigg |_{\hspace{0.1cm}{\rm Rayleigh}} + |z_0|^2 \hspace{0.05cm},</math>
+
Autokorrelationsfunktion&nbsp; $\rm (AKF)$&nbsp; und Leistungsdichtespektrum&nbsp; $\rm (LDS)$&nbsp; von Rayleigh und Rice unterscheiden sich bei ansonstern angepassten Parameterwerten nur geringfügig.&nbsp; Es gilt:
:<math> {\it \Phi}_z(f_{\rm D})\Bigg |_{\hspace{0.1cm}{\rm Rice}} \hspace{-0.1cm}  = \hspace{-0.1cm}  {\it \Phi}_z(f_{\rm D})\Bigg |_{\hspace{0.1cm}{\rm Rayleigh}} + |z_0|^2 \cdot \delta (f_{\rm D}) \hspace{0.05cm}.</math>
+
 
 +
::<math>\varphi_z ({\rm \Delta}t)\Bigg |_{\hspace{0.1cm}{\rm Rice}} \hspace{-0.5cm}  =  \varphi_z ({\rm \Delta}t)\Bigg |_{\hspace{0.1cm}{\rm Rayleigh}} \hspace{-0.8cm} + |z_0|^2 \hspace{0.05cm},</math>
 +
::<math> {\it \Phi}_z(f_{\rm D})\Bigg |_{\hspace{0.1cm}{\rm Rice}} \hspace{-0.5cm}  =   {\it \Phi}_z(f_{\rm D})\Bigg |_{\hspace{0.1cm}{\rm Rayleigh}} \hspace{-0.8cm} + |z_0|^2 \cdot \delta (f_{\rm D}) \hspace{0.05cm}.</math>
  
 
Berücksichtigt ist, dass die Spektraldarstellung eines  Gleichanteils zu einer Diracfunktion führt.<br>
 
Berücksichtigt ist, dass die Spektraldarstellung eines  Gleichanteils zu einer Diracfunktion führt.<br>
 
+
<br clear= all>
[[Datei:P ID2129 Mob T 1 4 S2 v1.png|Vergleich von Rayleigh-Fading (blau) und Rice-Fading (rot)|class=fit]]<br>
 
 
 
Die Bildbeschreibung folgt auf der nächsten Seite.<br>
 
 
 
== Beispielhafte Signalverläufe bei Rice–Fading (2) ==
 
<br>
 
[[Datei:P ID2130 Mob T 1 4 S2 v1.png|Vergleich von Rayleigh-Fading (blau) und Rice-Fading (rot)|class=fit]]<br>
 
 
 
 
Zu dieser Grafik ist anzumerken:
 
Zu dieser Grafik ist anzumerken:
*Die Realteile <i>x</i>(<i>t</i>) von Rayleigh (blau), Rice (rot)  unterscheiden sich durch die Konstante <i>x</i><sub>0</sub> = 0.707. Die statistischen Eigenschaften sind ansonsten gleich: Gaußsche WDF mit Streuung <i>&sigma;</i> = 0.707, entweder mittelwertfrei (Rayleigh) oder mit Mittelwert <i>x</i><sub>0</sub> (Rice).<br>
+
*Die Realteile&nbsp; $x(t)$&nbsp; von Rayleigh (blau) und Rice (rot)  unterscheiden sich durch die Konstante&nbsp; $x_0 = 0.707$.&nbsp; Die statistischen Eigenschaften sind ansonsten gleich: &nbsp; Gaußsche WDF&nbsp; $f_x(x)$&nbsp; mit Streuung&nbsp; $\sigma = 0.707$, entweder mittelwertfrei (Rayleigh) oder mit Mittelwert&nbsp; $x_0$&nbsp; (Rice).<br>
  
*Im Imaginärteil <i>y</i>(<i>t</i>) erkennt man bei Rice zusätzlich die Gleichkomponente <i>y</i><sub>0</sub> = &ndash;0.707. Die (in der Grafik nicht dargestellte) WDF <i>f<sub>y</sub></i>(<i>y</i>) ist somit eine Gaußkurve mit der Streuung <i>&sigma;</i> = 0.707 um den Mittelwert &ndash;0.707, also achsensymmetrisch zur skizzierten WDF <i>f<sub>x</sub></i>(<i>x</i>).<br>
+
*Im Imaginärteil&nbsp; $y(t)$&nbsp; erkennt man bei Rice zusätzlich die Gleichkomponente&nbsp; $y_0 = -0.707$.&nbsp; Die (hier nicht dargestellte) WDF&nbsp; $f_y(y)$&nbsp; ist somit eine Gaußkurve mit der Streuung&nbsp; $\sigma = 0.707$&nbsp; um den Mittelwert&nbsp; $ y_0 = -0.707$, also achsensymmetrisch zur skizzierten WDF&nbsp; $f_x(x)$.<br>
  
*Die (logarithmische) Betragsdarstellung &nbsp;&#8658;&nbsp;  <i>a</i>(<i>t</i>) = |<i>z</i>(<i>t</i>)|  zeigt, dass die rote Kurve meist oberhalb der blauen liegt. Dies wird auch aus der WDF deutlich. Beim Rice&ndash;Kanal ist die Fehlerwahrscheinlichkeit unter Berücksichtigung von AWGN&ndash;Rauschen niedriger als bei Rayleigh, da  der Empfänger über den Rice&ndash;Direktpfad viel nutzbare Energie erhält.<br>
+
*Die (logarithmische) Betragsdarstellung &nbsp; &#8658; &nbsp;  $a(t) =|z(t)|$   zeigt, dass die rote Kurve meist oberhalb der blauen liegt.&nbsp; Dies ist auch aus der WDF&nbsp; $f_a(a)$&nbsp; ablesbar.  
 +
*Beim Rice&ndash;Kanal ist die Fehlerwahrscheinlichkeit unter Berücksichtigung von AWGN&ndash;Rauschen niedriger als bei Rayleigh, da  der Empfänger über den Rice&ndash;Direktpfad viel nutzbare Energie erhält.<br>
  
*Die WDF <i>f<sub>&#981;</sub></i>(<i>&#981;</i>) zeigt den Vorzugswinkel <i>&#981;</i> &asymp; &ndash;45&deg; des Rice&ndash;Kanals. Der komplexe Faktor <i>z</i>(<i>t</i>) befindet sich großteils im 4. Quadranten (wegen <i>x</i><sub>0</sub> > 0, <i>y</i><sub>0</sub> < 0), während beim Rayleigh&ndash;Kanal alle Quadranten gleichwahrscheinlich sind.<br>
+
*Die WDF&nbsp; $f_\phi(\phi)$&nbsp; zeigt den Vorzugswinkel&nbsp; $\phi \approx -45^\circ$&nbsp; des vorliegenden  Rice&ndash;Kanals.&nbsp; Der komplexe Faktor&nbsp; $z(t)$&nbsp; befindet sich wegen&nbsp; $x_0 > 0$&nbsp; und&nbsp; $y_0 < 0$&nbsp; großteils im vierten Quadranten, während beim Rayleigh&ndash;Kanal alle Quadranten gleichwahrscheinlich sind.<br>
  
==Aufgaben==
+
==Aufgaben zum Kapitel==
 
<br>
 
<br>
[[Aufgaben:1.6 Rice–Fading – AKF/LDS|A1.6 Rice–Fading – AKF/LDS]]
+
[[Aufgaben:Aufgabe_1.6:_AKF_und_LDS_bei_Rice–Fading|Aufgabe 1.6: AKF und LDS bei Rice–Fading]]
 +
 
 +
[[Aufgabe_1.6Z:_Rayleigh_und_Rice_im_Vergleich|Aufgabe 1.6Z: Rayleigh und Rice im Vergleich]]
  
[[Zusatzaufgaben:1.6 Rayleigh und Rice im Vergleich]]
+
[[Aufgaben:1.7 WDF des Rice–Fadings|Aufgabe 1.7: WDF des Rice–Fadings]]
  
[[Aufgaben:1.7 WDF des Rice–Fadings|A1.7 WDF des Rice–Fadings]]
+
==Quellenverzeichnis==
  
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 12. Februar 2021, 14:17 Uhr

Kanalmodell und Rice–WDF


Die  Rayleigh–Verteilung  beschreibt den Mobilfunkkanal unter der Annahme, dass kein direkter Pfad vorhanden ist und sich somit der multiplikative Faktor  $z(t) = x(t) + {\rm j} \cdot y(t)$  allein aus diffus gestreuten Komponenten zusammensetzt.

Rice-Fading-Kanalmodell

Bei Vorhandensein einer Direktkomponente  $($englisch:  Line of Sight,  $\rm LoS)$  muss man im Modell zu den mittelwertfreien Gaußprozessen  $x(t)$  und  $y(t)$  noch Gleichkomponenten  $x_0$  und/oder  $y_0$  hinzufügen:

\[x(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} x(t) +x_0 \hspace{0.05cm}, \hspace{0.2cm} y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} y(t) +y_0\hspace{0.05cm},\]
\[z(t) = x(t) + {\rm j} \cdot y(t) \hspace{0.1cm} \Rightarrow \hspace{0.1cm} z(t) +z_0 \hspace{0.05cm},\hspace{0.2cm} z_0 = x_0 + {\rm j} \cdot y_0\hspace{0.05cm}.\]

Die Grafik zeigt dieses  Rice–Fading–Kanalmodell.  Als Sonderfall ergibt sich das Rayleigh–Modell, wenn man  $x_0 = y_0= 0$  setzt.


Das Rice–Fading–Modell lässt sich wie folgt zusammenfassen, siehe auch  [Hin08][1]:

  • Der Realteil  $x(t)$  ist gaußverteilt mit Mittelwert  $x_0$  und Varianz  $\sigma ^2$.
  • Der Imaginärteil  $y(t)$  ist ebenfalls gaußverteilt  $($Mittelwert  $y_0$,  gleiche Varianz  $\sigma ^2)$  sowie unabhängig von  $x(t)$.
  • Für  $z_0 \ne 0$  ist der Betrag  $|z(t)|$  riceverteilt, woraus die Bezeichnung „Rice–Fading” herrührt.
  • Zur Vereinfachung der Schreibweise setzen wir  $|z(t)| = a(t)$.  Für  $a < 0$  ist die Betrags–WDF  $f_a(a) \equiv 0$,  für  $a \ge 0$ gilt folgende Gleichung, wobei  $\rm I_0(\cdot)$  die  modifizierte Bessel–Funktion nullter Ordnung  bezeichnet:
\[f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} \big [ -\frac{a^2 + |z_0|^2}{2\sigma^2}\big ] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.5cm}\text{mit}\hspace{0.5cm}{\rm I }_0 (u) = {\rm J }_0 ({\rm j} \cdot u) = \sum_{k = 0}^{\infty} \frac{ (u/2)^{2k}}{k! \cdot \Gamma (k+1)} \hspace{0.05cm}.\]
  • Der Mobilfunkkanal ist um so besser für die Digitalsignalübertragung geeignet, je größer die „Direktpfadleistung”  $(|z_0|^2)$  gegenüber den Leistungen der Streukomponenten  $(2\sigma^2)$  ist.
  • Ist  $|z_0| \gg \sigma$  $($Faktor  $3$  oder mehr$)$, so kann die Rice–WDF mit guter Näherung durch eine Gaußverteilung mit Mittelwert  $|z_0|$  und Streuung  $\sigma$  angenähert werden.
  • Im Gegensatz zum Rayleigh–Fading   ⇒   $z_0 \equiv 0$  ist die Phase bei Rice–Fading nicht gleichverteilt, sondern es gibt eine Vorzugsrichtung  $\phi_0 = \arctan(y_0/x_0)$.
    Oft setzt man  $y_0 = 0$   ⇒   $\phi_0 = 0$.

Beispielhafte Signalverläufe bei Rice–Fading


Vergleich von Rayleigh-Fading (blau) und Rice-Fading (rot)

Die Grafik zeigt typische Signalverläufe und Dichtefunktionen zweier Mobilfunkkanäle:

  • Rayleigh–Fading  (blaue Kurven)  mit 
$${\rm E}\big [|z(t))|^2\big ] = 2 \cdot \sigma^2 = 1,$$
  • Rice–Fading  (rote Kurven)  mit gleichem  $\sigma$  sowie 
$$x_0 = 0.707,\ \ y_0 = -0.707.$$

Für die Erzeugung der Signalausschnitte nach obigem Modell liegt jeweils die  maximale Dopplerfrequenz  $f_\text{D, max} = 100 \ \rm Hz$  zugrunde.

Autokorrelationsfunktion  $\rm (AKF)$  und Leistungsdichtespektrum  $\rm (LDS)$  von Rayleigh und Rice unterscheiden sich bei ansonstern angepassten Parameterwerten nur geringfügig.  Es gilt:

\[\varphi_z ({\rm \Delta}t)\Bigg |_{\hspace{0.1cm}{\rm Rice}} \hspace{-0.5cm} = \varphi_z ({\rm \Delta}t)\Bigg |_{\hspace{0.1cm}{\rm Rayleigh}} \hspace{-0.8cm} + |z_0|^2 \hspace{0.05cm},\]
\[ {\it \Phi}_z(f_{\rm D})\Bigg |_{\hspace{0.1cm}{\rm Rice}} \hspace{-0.5cm} = {\it \Phi}_z(f_{\rm D})\Bigg |_{\hspace{0.1cm}{\rm Rayleigh}} \hspace{-0.8cm} + |z_0|^2 \cdot \delta (f_{\rm D}) \hspace{0.05cm}.\]

Berücksichtigt ist, dass die Spektraldarstellung eines Gleichanteils zu einer Diracfunktion führt.

Zu dieser Grafik ist anzumerken:

  • Die Realteile  $x(t)$  von Rayleigh (blau) und Rice (rot) unterscheiden sich durch die Konstante  $x_0 = 0.707$.  Die statistischen Eigenschaften sind ansonsten gleich:   Gaußsche WDF  $f_x(x)$  mit Streuung  $\sigma = 0.707$, entweder mittelwertfrei (Rayleigh) oder mit Mittelwert  $x_0$  (Rice).
  • Im Imaginärteil  $y(t)$  erkennt man bei Rice zusätzlich die Gleichkomponente  $y_0 = -0.707$.  Die (hier nicht dargestellte) WDF  $f_y(y)$  ist somit eine Gaußkurve mit der Streuung  $\sigma = 0.707$  um den Mittelwert  $ y_0 = -0.707$, also achsensymmetrisch zur skizzierten WDF  $f_x(x)$.
  • Die (logarithmische) Betragsdarstellung   ⇒   $a(t) =|z(t)|$ zeigt, dass die rote Kurve meist oberhalb der blauen liegt.  Dies ist auch aus der WDF  $f_a(a)$  ablesbar.
  • Beim Rice–Kanal ist die Fehlerwahrscheinlichkeit unter Berücksichtigung von AWGN–Rauschen niedriger als bei Rayleigh, da der Empfänger über den Rice–Direktpfad viel nutzbare Energie erhält.
  • Die WDF  $f_\phi(\phi)$  zeigt den Vorzugswinkel  $\phi \approx -45^\circ$  des vorliegenden Rice–Kanals.  Der komplexe Faktor  $z(t)$  befindet sich wegen  $x_0 > 0$  und  $y_0 < 0$  großteils im vierten Quadranten, während beim Rayleigh–Kanal alle Quadranten gleichwahrscheinlich sind.

Aufgaben zum Kapitel


Aufgabe 1.6: AKF und LDS bei Rice–Fading

Aufgabe 1.6Z: Rayleigh und Rice im Vergleich

Aufgabe 1.7: WDF des Rice–Fadings

Quellenverzeichnis

  1. Hindelang, T.:  Mobile Communications.  Vorlesungsmanuskript.  Lehrstuhl für Nachrichtentechnik,  TU München, 2008.