Signaldarstellung/Fehlermöglichkeiten bei Anwendung der DFT: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(30 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 6: Zeile 6:
 
}}
 
}}
  
==Der mittlere quadratische Fehler Qualitätskriterium==
+
==Der mittlere quadratische Fehler als Qualitätskriterium==
 +
<br>
 +
Im Folgenden werden einige Fehlermöglichkeiten bei Anwendung der DFT kurz diskutiert, wobei wir uns auf die Transformation vom Zeit– in den Frequenzbereich beschränken.&nbsp; Auch in seinen Abtastwerten wird sich im Allgemeinen das über die DFT ermittelte Spektrum&nbsp; $D(\mu )/f_{\rm A}$&nbsp; vom tatsächlichen Spektrum&nbsp; $X(\mu \cdot f_{\rm A})$&nbsp; unterscheiden, was auf zwei Prozesse zurückzuführen ist:
 +
*die&nbsp; $\text{Abtastung}$, also die Reduzierung der Information über&nbsp; $x(t)$&nbsp; auf&nbsp; $N$&nbsp; Zahlenwerte,
 +
*die&nbsp; $\text{Fensterung}$, die das Signal&nbsp; $x(t)$&nbsp; eventuell fälschlicherweise begrenzt.
  
Im Folgenden werden einige Fehlermöglichkeiten bei Anwendung der DFT kurz diskutiert, wobei wir uns auf die Transformation vom Zeit– in den Frequenzbereich beschränken. Auch in seinen Abtastwerten wird sich im Allgemeinen das über die DFT ermittelte Spektrum $D(\mu )/f_{\rm A}$ vom tatsächlichen Spektrum $X(\mu \cdot f_{\rm A})$ unterscheiden, was auf zwei Prozesse zurückzuführen ist:
 
*die Abtastung, also die Reduzierung der Information über $x(t)$ auf $N$ Zahlenwerte,
 
*die Fensterung, die das Signal $x(t)$ eventuell fälschlicherweise begrenzt.
 
  
 
+
{{BlaueBox|TEXT=
Ein Gütekriterium, das beide Fehlerarten berücksichtigt, ist der '''mittlere quadratische Fehler''':
+
$\text{Definition:}$&nbsp;
 +
Ein Gütekriterium, das beide Fehlerarten berücksichtigt, ist der&nbsp; $\text{mittlere quadratische Fehler}$:
 
   
 
   
$${\rm MQF} =  \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1}
+
:$${\rm MQF} =  \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1}
  \left|X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A}}\right|^2 \hspace{0.05cm}.$$
+
  \left\vert X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A} }\right \vert^2 \hspace{0.05cm}.$$
  
Dieser ist stets ungleich 0. Die Größe von MQF hängt von folgenden Parametern ab:
+
Es ist stets&nbsp; ${\rm MQF} \ne 0$, da sich bei endlichem&nbsp; $N$&nbsp; nicht gleichzeitig die Degradation durch die Abtastung und durch die Fensterung zu Null machen lassen.}}  
*den Eigenschaften der vorliegenden Zeitfunktion $x(t)$ bzw. des Spektrums $X(f)$,
 
*dem DFT–Parameter $N$; je größer $N$ gewählt wird, umso kleiner wird MQF,
 
*einem der vier weiteren DFT–Parameter, zum Beispiel $f_{\rm A}$. Die weiteren Parameter sind über die Gleichungen $f_{\rm P} = N \cdot f_{\rm A}, T_{\rm P} = 1/f_{\rm A}$ und $T_{\rm A} = T_{\rm P}/N$ festgelegt.
 
  
Wir möchten Sie bereits hier auf das Lernvideo [[Fehlermöglichkeiten bei Anwendung der DFT]] hinweisen, das den Inhalt dieses Kapitels verdeutlicht. Unten sehen Sie ein Einzelbild dieses Videos:
 
  
[[Datei:P_ID2732__Sig_T_5_3_programm.png|Bildschirmabzug des Programms „Fehlermöglichkeiten bei Anwendung der DFT”]]
+
Die Größe dieser Bewertungsgröße&nbsp;  ${\rm MQF}$&nbsp; hängt von folgenden Parametern ab:
 +
*den Eigenschaften der vorliegenden Zeitfunktion&nbsp; $x(t)$&nbsp; bzw. des Spektrums&nbsp; $X(f)$,
 +
*dem DFT–Parameter&nbsp; $N$;&nbsp; je größer&nbsp; $N$&nbsp; gewählt wird, umso kleiner wird&nbsp; ${\rm MQF}$,
 +
*einem der vier weiteren DFT–Parameter, zum Beispiel&nbsp; $f_{\rm A}$.
  
  
{{Beispiel}}
+
Die weiteren DFT–Parameter sind bei gegebenem&nbsp; $N$&nbsp; über die Gleichungen&nbsp; $f_{\rm P} = N \cdot f_{\rm A}$,&nbsp; $T_{\rm P} = 1/f_{\rm A}$&nbsp; und&nbsp; $T_{\rm A} = T_{\rm P}/N$&nbsp; festgelegt.
Wir betrachten beispielhaft einen Gaußimpuls mit der äquivalenten Impulsdauer $\Delta t = T$ ($T$ ist lediglich ein Normierungsparameter):
 
 
$$x(t) = {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm}.$$
 
  
Der Gaußimpuls eignet sich aufgrund des schnellen, exponentiellen Abklingens sowohl im Zeit– als auch im Frequenzbereich sehr gut für die Anwendung der DFT. Die folgende Grafik zeigt das Ergebnis der DFT für $N = 16$ und $T_{\rm A}/T = 0.25$. Damit gilt auch: $f_{\rm A} \cdot T = 0.25$.
+
Wir weisen Sie bereits hier auf das Lernvideo&nbsp; [[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Fehlermöglichkeiten bei Anwendung der DFT]]&nbsp; hin, das den Inhalt dieses Kapitels verdeutlicht.  
  
[[Datei:P_ID1142__Sig_T_5_3_S1_neu.png|Quasi-fehlerfreie DFT mit N = 16]]
 
  
Zu dieser Darstellung ist Folgendes anzumerken:
+
[[Datei:P_ID1142__Sig_T_5_3_S1_neu.png|right|frame|Quasi-fehlerfreie DFT mit&nbsp; $N = 16$]]
*Die berücksichtigten Abtastwerte von $x(t)$ liegen im Bereich $|t/T| ≤ 2$. Da $x(\pm 2T)$ sehr klein ist, führt die Periodifizierung im Zeitbereich mit $T_{\rm P}/T = N \cdot T_{\rm A}/T = 2$ zu keinen gravierenden Fehlern.
+
{{GraueBox|TEXT=
*Mit $f_{\rm A} \cdot T = 0.25$ sowie $N = 16$ ergibt sich der (normierte) DFT–Parameter $f_{\rm P} \cdot T = 4$. Die diskreten Spektrallinien der DFT liegen somit im Bereich $–2/T ≤  f  < +2/T$.
+
$\text{Beispiel 1:}$&nbsp;
*Der mittlere quadratrische Fehler ist mit $\text{MQF} \approx 10^{–12}$ relativ klein, was auf die günstige Wahl von $f_{\rm A} \cdot T = 0.25$ (bei gegebenem  $N = 16$) zurückzuführen ist.
+
Wir betrachten beispielhaft einen Gaußimpuls mit der äquivalenten Impulsdauer&nbsp; $\Delta t = T$, wobei&nbsp; $T$&nbsp; gleichzeitig als Normierungsparameter verwendet wird:
*Die DFT–Genauigkeit kann durch Vergrößerung von $N$ verbessert werden. Für $N = 1024$ erhält man den kleinstmöglichen Wert $\text{MQF} \approx 8 \cdot 10^{–17}$, wenn $f_{\rm A} \cdot T = 0.125$ gewählt wird. Für die drei weiteren DFT–Parameter gilt dann:
+
: $$f_{\rm P} \cdot T = 128, \hspace{0.5cm}T_{\rm A}/T = 1/128,  \hspace{0.5cm} T_{\rm P}/T = N \cdot T_{\rm A}/T= 8.$$
+
:$$x(t) = {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm}.$$
  
{{end}}
+
Der Gaußimpuls eignet sich aufgrund des schnellen, exponentiellen Abklingens sowohl im Zeit– als auch im Frequenzbereich sehr gut für die Anwendung der DFT.
  
 +
Die untere Grafik zeigt das DFT&ndash;Ergebnis
 +
*für&nbsp; $N = 16$&nbsp; und
 +
*$T_{\rm A}/T = 0.25$ &nbsp; &rArr; &nbsp; $f_{\rm A} \cdot T = 0.25$ &nbsp; &rArr; &nbsp; $T_{\rm P}/T = 4$.
 +
<br clear=all>
 +
Zu dieser Darstellung ist Folgendes anzumerken:
 +
*Die berücksichtigten Abtastwerte von&nbsp; $x(t)$&nbsp; liegen im Bereich&nbsp; $\vert t/T \vert≤ 2$.&nbsp; Da&nbsp; $x(\pm 2T)$&nbsp; sehr klein ist, führt die Periodifizierung im Zeitbereich mit&nbsp; $T_{\rm P}/T = N \cdot T_{\rm A}/T = 4$&nbsp; zu keinen gravierenden Fehlern.
 +
*Mit&nbsp; $f_{\rm A} \cdot T = 0.25$&nbsp; sowie&nbsp; $N = 16$&nbsp; ergibt sich der (normierte) DFT–Parameter&nbsp; $f_{\rm P} \cdot T = 4$.
 +
*Die diskreten Spektrallinien der DFT liegen somit im Bereich&nbsp; $–2/T ≤  f  < +2/T$.
 +
*Der mittlere quadratrische Fehler ist relativ klein&nbsp; $\text{(MQF} \approx 10^{–12})$, was auf die günstige Wahl von&nbsp; $f_{\rm A} \cdot T = 0.25$&nbsp; $($bei gegebenem&nbsp;  $N = 16)$&nbsp; zurückzuführen ist.
 +
*Die DFT–Genauigkeit kann durch Vergrößerung von&nbsp; $N$&nbsp; verbessert werden:
 +
:*Für&nbsp; $N = 1024$&nbsp; erhält man den kleinstmöglichen Wert&nbsp; $\text{MQF} \approx 8 \cdot 10^{–17}$, wenn&nbsp; $f_{\rm A} \cdot T = 0.125$&nbsp; gewählt wird.&nbsp; Für die weiteren DFT–Parameter gilt dann:
 +
:: $$f_{\rm P} \cdot T = 128, \hspace{0.5cm}T_{\rm A}/T = 1/128,  \hspace{0.5cm} T_{\rm P}/T = N \cdot T_{\rm A}/T= 8.$$
 +
:*Die angegebenen&nbsp; $\text{MQF}$&ndash;Werte gelten für einen&nbsp; 16Bit&ndash;Prozessor.&nbsp; Bei einem 32&ndash;Bit&ndash;Prozessor (das bedeutet:&nbsp; kleinere Quantisierungsfehler des Rechners)&nbsp; wäre&nbsp; $\text{MQF}$&nbsp; noch kleiner, aber niemals Null. }}
  
==DFT - Verfälschung durch Fensterung - Abbruchfehler==
 
  
Ein typischer Fehler bei Anwendung der DFT ist auf die '''Fensterung''' zurückzuführen. Diese als ''Abbruchfehler'' bekannte Verfälschung lässt sich folgendermaßen erklären:
+
==DFT-Verfälschung durch Fensterung &ndash; Abbruchfehler==
*Die im DFT–Algorithmus impliziert enthaltene Fensterung entspricht der Multiplikation des Signals $x(t)$ mit einer Rechteckfunktion der Höhe 1 und der Dauer $T_{\rm P} = N \cdot T_{\rm A}$.
+
<br>
*Ist das Zeitsignal $x(t)$ nicht auf $T_{\rm P}$ begrenzt, so stimmt das DFT–Ergebnis nicht mit dem tatsächlichen Spektrum $X(f)$ überein, sondern ergibt sich aus diesem durch Faltung mit der Spektralfunktion $T_{\rm P} \cdot \text{si}(\pi fT_{\rm P})$.
+
Ein typischer Fehler bei Anwendung der DFT ist auf die&nbsp; $\text{Fensterung}$&nbsp; zurückzuführen.&nbsp; Diese als&nbsp; &bdquo;Abbruchfehler&rdquo;&nbsp; bekannte Verfälschung lässt sich folgendermaßen erklären:
*Im Grenzfall $T_{\rm P} \to \infty$, was bei gegebenem Abstand $T_{\rm A}$ der Abtastwerte auch eine unendlich große Stützstellenzahl $N$ bedeuten würde, entartet $T_{\rm P} \cdot \text{si}(\pi fT_{\rm P})$ zu einer Diracfunktion und das Originalspektrum $X(f)$ bliebe erhalten.
+
*Die im DFT–Algorithmus implizit enthaltene Fensterung entspricht der Multiplikation des Signals&nbsp; $x(t)$ mit&nbsp; einem Rechteck der Höhe&nbsp; $1$&nbsp; und der Dauer&nbsp; $T_{\rm P} = N \cdot T_{\rm A}$.
*Die DFT eines zeitlich unbegrenzten Signals – zum Beispiel eines periodischen Signals – wird immer einen Abbruchfehler hervorrufen, der nur durch besondere Maßnahmen in Grenzen gehalten werden kann. Hierauf wird in Kapitel 5.4 noch näher eingegangen.
+
*Ist das Zeitsignal&nbsp; $x(t)$&nbsp; nicht auf den Bereich&nbsp; $T_{\rm P}$&nbsp; begrenzt, so stimmt das DFT–Ergebnis nicht mit dem tatsächlichen Spektrum&nbsp; $X(f)$&nbsp; überein, sondern ergibt sich aus diesem durch Faltung mit der Spektralfunktion&nbsp; $T_{\rm P} \cdot \text{si}(\pi fT_{\rm P})$,&nbsp; wobei&nbsp; $\text{si}(x) = \sin(x)/x=\text{sinc}(x/\pi)$ .
*Bei zeitlich begrenzten, impulsartigen Signalen lässt sich der Abbruchfehler vermeiden, wenn man $T_{\rm P}$ hinreichend groß wählt. Durch weitere Vergrößerung des Fensters in Bereiche mit $x(t) \approx 0$ ergibt sich kein zusätzlicher Informationsgewinn  ⇒  MQF wird nicht kleiner.
+
*Im Grenzfall&nbsp; $T_{\rm P} \to \infty$, was bei gegebenem Abstand&nbsp; $T_{\rm A}$&nbsp; der Abtastwerte auch eine unendlich große Stützstellenzahl&nbsp; $N$&nbsp; bedeuten würde, entartet&nbsp; $T_{\rm P} \cdot \text{si}(\pi fT_{\rm P})$&nbsp; zu einer Diracfunktion und das Originalspektrum&nbsp; $X(f)$&nbsp; bliebe erhalten.
*Durch dieses Anfügen von Nullen ('''zero–padding''') treten nun die Abtastwerte von $X(f)$ in kleinerem Abstand $f_{\rm A} = 1/T_{\rm A}$ auf. Durch T_{\rm P}–Verdopplung erreicht man eine Interpolation der Frequenzabtastwerte genau in der Mitte zwischen zwei vorherigen Stützstellen.
+
*Die DFT eines zeitlich unbegrenzten Signals – zum Beispiel eines periodischen Signals – wird immer einen Abbruchfehler hervorrufen, der nur durch besondere Maßnahmen in Grenzen gehalten werden kann.&nbsp; Hierauf wird im Kapitel&nbsp; [[Signaldarstellung/Spektralanalyse|Spektralanalyse]]&nbsp; näher eingegangen.
 +
*Bei zeitlich begrenzten, impulsartigen Signalen lässt sich der Abbruchfehler vermeiden, wenn man&nbsp; $T_{\rm P}$&nbsp; hinreichend groß wählt.&nbsp; Durch weitere Vergrößerung des Fensters in Bereiche mit&nbsp; $x(t) \equiv 0$&nbsp; ergibt sich kein zusätzlicher Informationsgewinn  &nbsp; ⇒  &nbsp; $\text{MQF}$&nbsp; wird nicht kleiner.
 +
*Durch dieses Anfügen von Nullen&nbsp; $\text{(zero–padding)}$&nbsp; treten nun die Abtastwerte von&nbsp; $X(f)$&nbsp; in kleinerem Abstand&nbsp; $f_{\rm A} = 1/T_{\rm A}$&nbsp; auf.&nbsp; Durch&nbsp; $T_{\rm P}$–Verdopplung erreicht man eine Interpolation der Frequenzabtastwerte genau in der Mitte zwischen zwei vorherigen Stützstellen.
  
  
 
Das folgende Beispiel zeigt einen Abbruchfehler aufgrund ungünstig gewählter DFT–Parameter.
 
Das folgende Beispiel zeigt einen Abbruchfehler aufgrund ungünstig gewählter DFT–Parameter.
  
{{Beispiel}}
+
[[Datei:P_ID1143__Sig_T_5_3_S2_neu.png|right|frame|Abbruchfehler bei einer DFT mit&nbsp; $N = 16$]]
Die Grafik zeigt das Ergebnis der DFT für gleiches $x(t)$ und $X(f)$ wie auf der letzten Seite, aber nun mit den DFT–Parametern $N = 16$ und $T_A/T = 0.125$.
+
{{GraueBox|TEXT=
 +
$\text{Beispiel 2:}$&nbsp;
 +
Die Grafik zeigt das Ergebnis der DFT für gleiches&nbsp; $x(t)$&nbsp; und&nbsp; $X(f)$&nbsp; sowie gleiches&nbsp; $N = 16$&nbsp; wie im&nbsp; [[Signaldarstellung/Fehlermöglichkeiten_bei_Anwendung_der_DFT#Der_mittlere_quadratische_Fehler_als_Qualit.C3.A4tskriterium|$\text{Beispiel 1}$]], aber nun mit demgegenüber um den Faktor&nbsp; $2$&nbsp; feinerer Abtastung im Zeitbereich:
 +
:$$T_{\rm A}/T = 0.125 \ \Rightarrow \ f_{\rm A} \cdot T = 0.5.$$
  
[[Datei:P_ID1143__Sig_T_5_3_S2_neu.png|Abbruchfehler bei einer DFT mit N = 16]]
+
Der Vergleich mit&nbsp; [[Signaldarstellung/Fehlermöglichkeiten_bei_Anwendung_der_DFT#Der_mittlere_quadratische_Fehler_als_Qualit.C3.A4tskriterium|Beispiel 1]]&nbsp; $(T_{\rm A}/T = 0.25 \ \Rightarrow \  f_{\rm A} \cdot T = 0.25)$&nbsp; zeigt:
 +
*Der Abstand der  Frequenzabtastwerte wird größer:&nbsp; $f_{\rm A} \cdot T = 0.5$.
 +
*Gleichzeitig verringert sich&nbsp; $T_{\rm P}/T$&nbsp; von&nbsp; $4$&nbsp; auf&nbsp; $2$.
 +
*Damit werden nun nur noch die Signalanteile im Bereich&nbsp; $\vert t \vert < T$&nbsp; durch die DFT erfasst.
  
Aus dem Vergleich mit der vorherigen Grafik (gültig für $T_A/T = 0.25$) erkennt man:
 
*Die Frequenzabtastwerte treten nun mit doppelt so großem Abstand auf: $f_A \cdot T = 0.5$.
 
*Gleichzeitig verringert sich $T_P/T$ von $4$ auf $2$.
 
*Damit werden nun nur noch die Signalanteile im Bereich $|t| < T$ durch die DFT erfasst.
 
  
 +
$\text{Zusammengefasst:}$ <br>Mit diesen DFT–Parametern entsteht ein&nbsp; $\text{Abbruchfehler}$', durch den der mittlere quadratische Fehler&nbsp; $\rm (MQF)$&nbsp; signifikant von&nbsp; $10^{-12}$ auf $4 \cdot 10^{-5}$&nbsp; vergrößert wird.
  
Mit diesen DFT–Parametern entsteht ein '''Abbruchfehler''', durch den der mittlere quadratische Fehler (MQF) signifikant von $10^{–12}$ auf $4 \cdot 10^{–5}$ vergrößert wird.
 
  
{{end}}
+
Wir verweisen nochmals auf das Lernvideo <br>[[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Fehlermöglichkeiten bei Anwendung der DFT]]. }}
  
  
==DFT - Verfälschung durch Abtastung - Aliasingfehler==
 
  
Auch durch eine ungeeignete Abtastung der Zeitfunktion $x(t)$ kann es zu einer Verfälschung des DFT–Ergebnisses kommen. Dieser so genannte Aliasingfehler lässt sich wie folgt erklären:
+
==DFT-Verfälschung durch Abtastung &ndash; Aliasingfehler==
*Die Abtastung von $x(t)$ im Abstand $T_A$ bewirkt eine periodische Fortsetzung des Spektrums bei ganzzahligen Vielfachen der Periodisierungsfrequenz $f_P = 1/T_A$.
+
<br>
*Besitzt das Spektrum $X(f)$ auch Spektralanteile bei $|f| > f_P/2$, so ist das Abtasttheorem nicht erfüllt; es kommt zu Überlappungen der zu addierenden, verschobenen Frequenzanteile.
+
Auch eine ungeeignete Abtastung der Zeitfunktion&nbsp; $x(t)$&nbsp; kann das DFT–Ergebnis signifikant verfälschen.&nbsp; Dieser so genannte&nbsp; $\text{Aliasingfehler}$&nbsp; lässt sich wie folgt erklären:
*Nur bei bandbegrenztem Signal kann der Aliasingfehler durch geeignete DFT–Parameter vermieden werden. Dagegen ist bei zeitlich begrenzten, impulsartigen Signalen dieser Fehler unvermeidbar, da zeitbegrenzte Signale nicht gleichzeitig bandbegrenzt sein können.
+
*Die Abtastung von&nbsp; $x(t)$&nbsp; im Abstand&nbsp; $T_{\rm A}$&nbsp; bewirkt eine periodische Fortsetzung des Spektrums bei Vielfachen der Periodisierungsfrequenz&nbsp; $f_{\rm P} = 1/T_{\rm A}$.
*Der Aliasingfehler wird durch eine feinere Abtastung (also: kleineres $T_A = 1/f_P$) kleiner. Dies erreicht man bei gleichbleibendem $T_P$ – um den Abbruchfehler nicht anwachsen zu lassen – allerdings nur durch ein größeres N und damit einen größeren Rechenaufwand.
+
*Besitzt das Spektrum&nbsp; $X(f)$&nbsp; auch Spektralanteile bei&nbsp; $|f| > f_{\rm P}/2$, so ist das Abtasttheorem nicht erfüllt und es kommt zu Überlappungen der zu addierenden, verschobenen Frequenzanteile.
 +
*Nur bei bandbegrenztem Signal kann der Aliasingfehler durch geeignete DFT–Parameter vermieden werden.&nbsp; Dagegen ist bei zeitlich begrenzten, impulsartigen Signalen dieser Fehler unvermeidbar, da zeitbegrenzte Signale nicht gleichzeitig bandbegrenzt sein können.
 +
*Der Aliasingfehler wird durch eine feinere Abtastung&nbsp; $($also: &nbsp; kleineres&nbsp; $T_{\rm A} = 1/f_{\rm P})$&nbsp; kleiner.&nbsp; Dies erreicht man bei gleichbleibendem&nbsp; $T_{\rm A}$&nbsp; – um den Abbruchfehler nicht anwachsen zu lassen – allerdings nur durch ein größeres&nbsp; $N$&nbsp; und damit einen größeren Rechenaufwand.
  
  
Wir weisen Sie nochmals auf unser Lernvideo hin:
+
Das folgende&nbsp; $\text{Beispiel 3}$&nbsp; zeigt einen solchen Aliasingfehler aufgrund falsch gewählter DFT–Parameter:  
Fehlermöglichkeiten bei Anwendung der DFT (Dauer 7:26)
+
*Gegenüber dem &bdquo;Vergleichssystem&rdquo; gemäß&nbsp; [[Signaldarstellung/Fehlermöglichkeiten_bei_Anwendung_der_DFT#Der_mittlere_quadratische_Fehler_als_Qualit.C3.A4tskriterium|$\text{Beispiel 1}$]]&nbsp;  ist&nbsp; $T_{\rm A}$&nbsp; zu groß und&nbsp; $f_{\rm A}$&nbsp; zu klein dimensioniert.
 +
*Die Stützstellenanzahl ist in beiden Fällen&nbsp; $N = 16$.
  
Das Beispiel auf der nächsten Seite zeigt einen solchen Aliasingfehler aufgrund falsch gewählter DFT–Parameter ($T_A$ zu groß, $f_A$ zu klein).
 
  
{{Beispiel}}
+
[[Datei:P_ID2733__Sig_T_5_3_S3_neu.png|right|frame|Aliasingfehler bei einer DFT mit&nbsp; $N = 16$]]
Die folgende Grafik verdeutlicht den Aliasingfehler bei gaußförmigem $x(t)$ bzw. $X(f)$. Es gelten die DFT–Parameter $N$ = 16 und $f_A \cdot T$ = 0.125. Vergleichen Sie das DFT–Ergebnis mit der Grafik bei günstigerer Frequenzauflösung ($f_A \cdot T = 0.25$, ebenfalls für $N = 16$).
+
{{GraueBox|TEXT=
 
+
$\text{Beispiel 3:}$&nbsp;
[[Datei:P_ID2733__Sig_T_5_3_S3_neu.png|Aliasingfehler bei einer DFT mit N = 16]]
+
Die DFT–Parameter seien&nbsp; $N = 16$&nbsp; und&nbsp; $f_{\rm A} \cdot T= 0.125$.&nbsp; Somit ergibt sich für die drei anderen DFT–Parameter:
 
+
* $T_{\rm P}/T = 8 \hspace{0.8cm} \text{(Beispiel 1:} \ \ T_{\rm P}/T = 4)$,
Mit $N = 16$ und $f_A \cdot T = 0.125$ gilt für die anderen DFT–Parametern:
+
* $f_{\rm P} \cdot T = 2 \hspace{0.75cm} \text{(Beispiel 1:} \ \ f_{\rm P} \cdot T = 4)$,
* $f_P \cdot T = 2$ (vorher: $f_P \cdot T = 4$),
+
* $T_{\rm A}/T = 0.5\hspace{0.45cm} \text{(Beispiel 1:} \ \ T_{\rm A}/T = 0.25)$.
* $T_P/T = 8$ (vorher: $T_P/T = 4$),
 
* $T_A/T = 0.5$ (vorher: $T_A/T = 0.25$).
 
  
  
 
Daraus ergeben sich folgende Konsequenzen:
 
Daraus ergeben sich folgende Konsequenzen:
*Der Abbruchfehler spielt wegen $T_P/T = 8$ keine Rolle (schon $T_P/T = 4$ war ausreichend).
+
*Der Abbruchfehler spielt wegen&nbsp; $T_{\rm P} /T = 8$&nbsp; weiterhin keine Rolle (schon&nbsp; $T_{\rm P} /T = 4$&nbsp; war ausreichend).
*Wegen $f_P \cdot T = 2$ entsteht nun allerdings Aliasing, weil die DFT von der Summe vieler Gaußfunktionen im Abstand $f_P \cdot T = 2$ ausgeht (gestrichelten Kurven in der Grafik ).
+
*Wegen&nbsp; $f_{\rm P}  \cdot T = 2$&nbsp; entsteht nun allerdings Aliasing, weil die DFT von der Summe vieler Gaußfunktionen im Abstand&nbsp; $f_{\rm P}  \cdot T = 2$&nbsp; ausgeht (dünn gestrichelte Kurven in der Grafik ).
*Somit ergibt sich hier mit $\text{MQF} \approx 2 /cdot 10^{-4}$ ein noch größerer Fehlerwert als durch den Abbruchfehler im letzten Beispiel.
+
*Die einzelnen DFT–Koeffizienten werden unterschiedlich verfälscht: &nbsp; Der mittlere DFT–Koeffizient&nbsp; $($für die Frequenz&nbsp; $f = 0)$&nbsp; ist nahezu richtig, während die Fehler der DFT–Koeffizienten zu den Rändern hin deutlich zunehmen.
 
+
*Im betrachteten Beispiel ist der DFT–Koeffizient für&nbsp; $f \cdot T = -1$&nbsp; doppelt so groß als er sein sollte, da die Gaußfunktion mit dem Zentrum bei&nbsp; $f \cdot T = -2$&nbsp; den gleichen Beitrag liefert wie die eigentliche Gaußfunktion um&nbsp; $f \cdot T = 0$&nbsp; (siehe gelbe Hinterlegung).
  
Die einzelnen DFT–Koeffizienten werden unterschiedlich verfälscht:
 
*Der mittlere DFT–Koeffizient (für die Frequenz $f = 0$) ist nahezu richtig, während zu den Rändern hin die Fehler der DFT–Koeffizienten deutlich zunehmen.
 
*Der DFT–Koeffizient für $f \cdot T = –1$ ist beispielsweise doppelt so groß als er sein sollte, da die Gaußfunktion mit dem Zentrum bei $f \cdot T = –2$ den gleichen Beitrag liefert wie die eigentliche Gaußfunktion um $f \cdot T = 0$ (siehe gelbe Hinterlegung).
 
  
 +
Somit ergibt sich hier mit&nbsp; $\text{MQF} \approx 2 \cdot 10^{-4}$&nbsp; ein viermal größerer Fehlerwert als durch den Abbruchfehler im&nbsp; [[Signaldarstellung/Fehlermöglichkeiten_bei_Anwendung_der_DFT#DFT-Verf.C3.A4lschung_durch_Fensterung_.E2.80.93_Abbruchfehler|$\text{Beispiel 2}$]].
  
{{end}}
+
Wir verweisen nochmals auf das Lernvideo&nbsp; [[Fehlermöglichkeiten_bei_Anwendung_der_DFT_(Lernvideo)|Fehlermöglichkeiten bei Anwendung der DFT]]. }}
  
  
 
==Aufgaben zum Kapitel==  
 
==Aufgaben zum Kapitel==  
 +
<br>
 +
[[Aufgaben:Aufgabe_5.3:_Mittlerer_Quadratischer_Fehler|Aufgabe 5.3: Mittlerer Quadratischer Fehler]]
  
[[Aufgaben:5.3 Mittlerer Quadratischer Fehler]]
+
[[Aufgaben:Aufgabe_5.3Z:_Zero-Padding|Aufgabe 5.3Z: Zero-Padding]]
 
 
  
  
5.3 Mittlerer Quadratischer Fehler
 
    5.3Z Zero-Padding
 
    5.4 Spektralanalyse
 
    5.5 Fast-Fouriertransformation
 
 
{{Display}}
 
{{Display}}

Aktuelle Version vom 17. Mai 2021, 14:56 Uhr

Der mittlere quadratische Fehler als Qualitätskriterium


Im Folgenden werden einige Fehlermöglichkeiten bei Anwendung der DFT kurz diskutiert, wobei wir uns auf die Transformation vom Zeit– in den Frequenzbereich beschränken.  Auch in seinen Abtastwerten wird sich im Allgemeinen das über die DFT ermittelte Spektrum  $D(\mu )/f_{\rm A}$  vom tatsächlichen Spektrum  $X(\mu \cdot f_{\rm A})$  unterscheiden, was auf zwei Prozesse zurückzuführen ist:

  • die  $\text{Abtastung}$, also die Reduzierung der Information über  $x(t)$  auf  $N$  Zahlenwerte,
  • die  $\text{Fensterung}$, die das Signal  $x(t)$  eventuell fälschlicherweise begrenzt.


$\text{Definition:}$  Ein Gütekriterium, das beide Fehlerarten berücksichtigt, ist der  $\text{mittlere quadratische Fehler}$:

$${\rm MQF} = \frac{1}{N}\cdot \sum_{\mu = 0 }^{N-1} \left\vert X(\mu \cdot f_{\rm A})-\frac{D(\mu)}{f_{\rm A} }\right \vert^2 \hspace{0.05cm}.$$

Es ist stets  ${\rm MQF} \ne 0$, da sich bei endlichem  $N$  nicht gleichzeitig die Degradation durch die Abtastung und durch die Fensterung zu Null machen lassen.


Die Größe dieser Bewertungsgröße  ${\rm MQF}$  hängt von folgenden Parametern ab:

  • den Eigenschaften der vorliegenden Zeitfunktion  $x(t)$  bzw. des Spektrums  $X(f)$,
  • dem DFT–Parameter  $N$;  je größer  $N$  gewählt wird, umso kleiner wird  ${\rm MQF}$,
  • einem der vier weiteren DFT–Parameter, zum Beispiel  $f_{\rm A}$.


Die weiteren DFT–Parameter sind bei gegebenem  $N$  über die Gleichungen  $f_{\rm P} = N \cdot f_{\rm A}$,  $T_{\rm P} = 1/f_{\rm A}$  und  $T_{\rm A} = T_{\rm P}/N$  festgelegt.

Wir weisen Sie bereits hier auf das Lernvideo  Fehlermöglichkeiten bei Anwendung der DFT  hin, das den Inhalt dieses Kapitels verdeutlicht.


Quasi-fehlerfreie DFT mit  $N = 16$

$\text{Beispiel 1:}$  Wir betrachten beispielhaft einen Gaußimpuls mit der äquivalenten Impulsdauer  $\Delta t = T$, wobei  $T$  gleichzeitig als Normierungsparameter verwendet wird:

$$x(t) = {\rm e}^{- \pi (t/T)^2} \hspace{0.05cm}.$$

Der Gaußimpuls eignet sich aufgrund des schnellen, exponentiellen Abklingens sowohl im Zeit– als auch im Frequenzbereich sehr gut für die Anwendung der DFT.

Die untere Grafik zeigt das DFT–Ergebnis

  • für  $N = 16$  und
  • $T_{\rm A}/T = 0.25$   ⇒   $f_{\rm A} \cdot T = 0.25$   ⇒   $T_{\rm P}/T = 4$.


Zu dieser Darstellung ist Folgendes anzumerken:

  • Die berücksichtigten Abtastwerte von  $x(t)$  liegen im Bereich  $\vert t/T \vert≤ 2$.  Da  $x(\pm 2T)$  sehr klein ist, führt die Periodifizierung im Zeitbereich mit  $T_{\rm P}/T = N \cdot T_{\rm A}/T = 4$  zu keinen gravierenden Fehlern.
  • Mit  $f_{\rm A} \cdot T = 0.25$  sowie  $N = 16$  ergibt sich der (normierte) DFT–Parameter  $f_{\rm P} \cdot T = 4$.
  • Die diskreten Spektrallinien der DFT liegen somit im Bereich  $–2/T ≤ f < +2/T$.
  • Der mittlere quadratrische Fehler ist relativ klein  $\text{(MQF} \approx 10^{–12})$, was auf die günstige Wahl von  $f_{\rm A} \cdot T = 0.25$  $($bei gegebenem  $N = 16)$  zurückzuführen ist.
  • Die DFT–Genauigkeit kann durch Vergrößerung von  $N$  verbessert werden:
  • Für  $N = 1024$  erhält man den kleinstmöglichen Wert  $\text{MQF} \approx 8 \cdot 10^{–17}$, wenn  $f_{\rm A} \cdot T = 0.125$  gewählt wird.  Für die weiteren DFT–Parameter gilt dann:
$$f_{\rm P} \cdot T = 128, \hspace{0.5cm}T_{\rm A}/T = 1/128, \hspace{0.5cm} T_{\rm P}/T = N \cdot T_{\rm A}/T= 8.$$
  • Die angegebenen  $\text{MQF}$–Werte gelten für einen  16Bit–Prozessor.  Bei einem 32–Bit–Prozessor (das bedeutet:  kleinere Quantisierungsfehler des Rechners)  wäre  $\text{MQF}$  noch kleiner, aber niemals Null.


DFT-Verfälschung durch Fensterung – Abbruchfehler


Ein typischer Fehler bei Anwendung der DFT ist auf die  $\text{Fensterung}$  zurückzuführen.  Diese als  „Abbruchfehler”  bekannte Verfälschung lässt sich folgendermaßen erklären:

  • Die im DFT–Algorithmus implizit enthaltene Fensterung entspricht der Multiplikation des Signals  $x(t)$ mit  einem Rechteck der Höhe  $1$  und der Dauer  $T_{\rm P} = N \cdot T_{\rm A}$.
  • Ist das Zeitsignal  $x(t)$  nicht auf den Bereich  $T_{\rm P}$  begrenzt, so stimmt das DFT–Ergebnis nicht mit dem tatsächlichen Spektrum  $X(f)$  überein, sondern ergibt sich aus diesem durch Faltung mit der Spektralfunktion  $T_{\rm P} \cdot \text{si}(\pi fT_{\rm P})$,  wobei  $\text{si}(x) = \sin(x)/x=\text{sinc}(x/\pi)$ .
  • Im Grenzfall  $T_{\rm P} \to \infty$, was bei gegebenem Abstand  $T_{\rm A}$  der Abtastwerte auch eine unendlich große Stützstellenzahl  $N$  bedeuten würde, entartet  $T_{\rm P} \cdot \text{si}(\pi fT_{\rm P})$  zu einer Diracfunktion und das Originalspektrum  $X(f)$  bliebe erhalten.
  • Die DFT eines zeitlich unbegrenzten Signals – zum Beispiel eines periodischen Signals – wird immer einen Abbruchfehler hervorrufen, der nur durch besondere Maßnahmen in Grenzen gehalten werden kann.  Hierauf wird im Kapitel  Spektralanalyse  näher eingegangen.
  • Bei zeitlich begrenzten, impulsartigen Signalen lässt sich der Abbruchfehler vermeiden, wenn man  $T_{\rm P}$  hinreichend groß wählt.  Durch weitere Vergrößerung des Fensters in Bereiche mit  $x(t) \equiv 0$  ergibt sich kein zusätzlicher Informationsgewinn   ⇒   $\text{MQF}$  wird nicht kleiner.
  • Durch dieses Anfügen von Nullen  $\text{(zero–padding)}$  treten nun die Abtastwerte von  $X(f)$  in kleinerem Abstand  $f_{\rm A} = 1/T_{\rm A}$  auf.  Durch  $T_{\rm P}$–Verdopplung erreicht man eine Interpolation der Frequenzabtastwerte genau in der Mitte zwischen zwei vorherigen Stützstellen.


Das folgende Beispiel zeigt einen Abbruchfehler aufgrund ungünstig gewählter DFT–Parameter.

Abbruchfehler bei einer DFT mit  $N = 16$

$\text{Beispiel 2:}$  Die Grafik zeigt das Ergebnis der DFT für gleiches  $x(t)$  und  $X(f)$  sowie gleiches  $N = 16$  wie im  $\text{Beispiel 1}$, aber nun mit demgegenüber um den Faktor  $2$  feinerer Abtastung im Zeitbereich:

$$T_{\rm A}/T = 0.125 \ \Rightarrow \ f_{\rm A} \cdot T = 0.5.$$

Der Vergleich mit  Beispiel 1  $(T_{\rm A}/T = 0.25 \ \Rightarrow \ f_{\rm A} \cdot T = 0.25)$  zeigt:

  • Der Abstand der Frequenzabtastwerte wird größer:  $f_{\rm A} \cdot T = 0.5$.
  • Gleichzeitig verringert sich  $T_{\rm P}/T$  von  $4$  auf  $2$.
  • Damit werden nun nur noch die Signalanteile im Bereich  $\vert t \vert < T$  durch die DFT erfasst.


$\text{Zusammengefasst:}$
Mit diesen DFT–Parametern entsteht ein  $\text{Abbruchfehler}$', durch den der mittlere quadratische Fehler  $\rm (MQF)$  signifikant von  $10^{-12}$ auf $4 \cdot 10^{-5}$  vergrößert wird.


Wir verweisen nochmals auf das Lernvideo
Fehlermöglichkeiten bei Anwendung der DFT.


DFT-Verfälschung durch Abtastung – Aliasingfehler


Auch eine ungeeignete Abtastung der Zeitfunktion  $x(t)$  kann das DFT–Ergebnis signifikant verfälschen.  Dieser so genannte  $\text{Aliasingfehler}$  lässt sich wie folgt erklären:

  • Die Abtastung von  $x(t)$  im Abstand  $T_{\rm A}$  bewirkt eine periodische Fortsetzung des Spektrums bei Vielfachen der Periodisierungsfrequenz  $f_{\rm P} = 1/T_{\rm A}$.
  • Besitzt das Spektrum  $X(f)$  auch Spektralanteile bei  $|f| > f_{\rm P}/2$, so ist das Abtasttheorem nicht erfüllt und es kommt zu Überlappungen der zu addierenden, verschobenen Frequenzanteile.
  • Nur bei bandbegrenztem Signal kann der Aliasingfehler durch geeignete DFT–Parameter vermieden werden.  Dagegen ist bei zeitlich begrenzten, impulsartigen Signalen dieser Fehler unvermeidbar, da zeitbegrenzte Signale nicht gleichzeitig bandbegrenzt sein können.
  • Der Aliasingfehler wird durch eine feinere Abtastung  $($also:   kleineres  $T_{\rm A} = 1/f_{\rm P})$  kleiner.  Dies erreicht man bei gleichbleibendem  $T_{\rm A}$  – um den Abbruchfehler nicht anwachsen zu lassen – allerdings nur durch ein größeres  $N$  und damit einen größeren Rechenaufwand.


Das folgende  $\text{Beispiel 3}$  zeigt einen solchen Aliasingfehler aufgrund falsch gewählter DFT–Parameter:

  • Gegenüber dem „Vergleichssystem” gemäß  $\text{Beispiel 1}$  ist  $T_{\rm A}$  zu groß und  $f_{\rm A}$  zu klein dimensioniert.
  • Die Stützstellenanzahl ist in beiden Fällen  $N = 16$.


Aliasingfehler bei einer DFT mit  $N = 16$

$\text{Beispiel 3:}$  Die DFT–Parameter seien  $N = 16$  und  $f_{\rm A} \cdot T= 0.125$.  Somit ergibt sich für die drei anderen DFT–Parameter:

  • $T_{\rm P}/T = 8 \hspace{0.8cm} \text{(Beispiel 1:} \ \ T_{\rm P}/T = 4)$,
  • $f_{\rm P} \cdot T = 2 \hspace{0.75cm} \text{(Beispiel 1:} \ \ f_{\rm P} \cdot T = 4)$,
  • $T_{\rm A}/T = 0.5\hspace{0.45cm} \text{(Beispiel 1:} \ \ T_{\rm A}/T = 0.25)$.


Daraus ergeben sich folgende Konsequenzen:

  • Der Abbruchfehler spielt wegen  $T_{\rm P} /T = 8$  weiterhin keine Rolle (schon  $T_{\rm P} /T = 4$  war ausreichend).
  • Wegen  $f_{\rm P} \cdot T = 2$  entsteht nun allerdings Aliasing, weil die DFT von der Summe vieler Gaußfunktionen im Abstand  $f_{\rm P} \cdot T = 2$  ausgeht (dünn gestrichelte Kurven in der Grafik ).
  • Die einzelnen DFT–Koeffizienten werden unterschiedlich verfälscht:   Der mittlere DFT–Koeffizient  $($für die Frequenz  $f = 0)$  ist nahezu richtig, während die Fehler der DFT–Koeffizienten zu den Rändern hin deutlich zunehmen.
  • Im betrachteten Beispiel ist der DFT–Koeffizient für  $f \cdot T = -1$  doppelt so groß als er sein sollte, da die Gaußfunktion mit dem Zentrum bei  $f \cdot T = -2$  den gleichen Beitrag liefert wie die eigentliche Gaußfunktion um  $f \cdot T = 0$  (siehe gelbe Hinterlegung).


Somit ergibt sich hier mit  $\text{MQF} \approx 2 \cdot 10^{-4}$  ein viermal größerer Fehlerwert als durch den Abbruchfehler im  $\text{Beispiel 2}$.

Wir verweisen nochmals auf das Lernvideo  Fehlermöglichkeiten bei Anwendung der DFT.


Aufgaben zum Kapitel


Aufgabe 5.3: Mittlerer Quadratischer Fehler

Aufgabe 5.3Z: Zero-Padding