Aufgaben:Aufgabe 3.2Z: si-Quadrat-Spektrum mit Diracs: Unterschied zwischen den Versionen
Zeile 33: | Zeile 33: | ||
{Wie groß ist der Gleichsignalanteil ${B}$ des Signals? | {Wie groß ist der Gleichsignalanteil ${B}$ des Signals? | ||
|type="{}"} | |type="{}"} | ||
− | $B$ = $-$ {-1.03--0.97 } $\text{V}$ | + | $B$ = $-$ { -1.03--0.97 } $\text{V}$ |
Version vom 16. Januar 2017, 17:26 Uhr
Das skizzierte Spektrum ${X(f)}$ eines Zeitsignals ${x(t)}$ setzt sich zusammen aus
- einem kontinuierlichen Anteil $X_1(f)$,
- dazu drei diracförmigen Spektrallinien.
Der kontinuierliche Anteil lautet mit $f_0 = 200\, \text{kHz}$ und $X_0 = 10^{–5} \text{V/Hz}$:
- $$X_1( f ) = X_0 \cdot {\mathop{\rm si}\nolimits} ^2 ( {\pi {f}/{f_0}} ),\quad {\rm wobei}\quad {\mathop{\rm si}\nolimits} (x) = {\sin (x)}/{x}.$$
Die Spektrallinie bei $f = 0$ hat das Gewicht $–\hspace{-0.08cm}1\,\text{V}$. Daneben gibt es noch zwei Linien bei den Frequenzen $\pm f_0$, beide mit dem Gewicht $0.5\,\text{V}$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Fouriertransformation und -rücktransformation.
- Weitere Informationen zu dieser Thematik liefert das Lernvideo Unterschiede und Gemeinsamkeiten von kontinuierlichen und diskreten Spektren.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Als bekannt vorausgesetzt werden kann, dass ein um $t = 0$ symmetrischer Dreieckimpuls $\text{y(t)}$ mit der Amplitude ${A}$ und der absoluten Dauer $2T$ (das heißt: die Signalwerte sind nur zwischen $–T$ und $+T$ ungleich $0$) folgende Spektralfunktion besitzt:
- $$Y( f ) = A \cdot T \cdot {\rm si}^2 ( \pi f T ).$$
Fragebogen
Musterlösung
1. Die einseitige Dauer des symmetrischen Dreieckimpulses beträgt $T = 1/f_0 = 5 \mu s$. Der Spektralwert $X_0 = X_1(f = 0)$ gibt die Impulsfläche von $x_1(t)$ an; diese ist $\text{A} \cdot \text{T}$. Daraus folgt:
- $$A = \frac{X_0 }{T} = \frac{ 10^{-5}\rm V/Hz }{5 \cdot 10^{-6}{\rm s}}\hspace{0.15 cm}\underline{= 2\;{\rm V}}.$$
2. Der Gleichsignalanteil ist durch das Gewicht des Diracs bei der Frequenz $f = 0$ gegeben. Man erhält $\text{B} \underline{= –1 \text{V}}$.
3. Die beiden Spektrallinien bei $\pm f_0$ ergeben zusammen ein Cosinussignal mit der Amplitude $\text{C} \underline{= 1 \text{V}}$.
4. Der Maximalwert tritt zum Zeitpunkt $\text{t} = 0$ auf (Dreieckimpuls und Cosinussignal maximal) und beträgt $x_\text{max} \underline{= \text{A} + \text{B} + \text{C} = 2 \text{V}}$. Die minimalen Werte von $\text{x(t)}$ ergeben sich, wenn der Dreieckimpuls abgeklungen ist und die Cosinusfunktion den Wert $–1$ liefert: $x_\text{min} \underline{= \text{B} – \text{C} = –2 \text{V}}$.