Aufgaben:Aufgabe 3.7: Synchrondemodulator: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 30: Zeile 30:
 
$A$  = { 2 3% }
 
$A$  = { 2 3% }
  
{Berechnen Sie das Ausgangssignal $v(t)$ unter den Voraussetzungen $A = 2$ und $f_{\rm T} =  31\,\text{kHz}$ = 31 kHz. Welcher Signalwert tritt zum Zeitpunkt$t = 50\, µ\text{s}$ auf?
+
{Berechnen Sie das Ausgangssignal $v(t)$ unter den Voraussetzungen $A = 2$ und $f_{\rm T} =  31\,\text{kHz}$ = 31 kHz. Welcher Signalwert tritt zum Zeitpunkt$ t = 50\, µ\text{s}$ auf?
 
|type="{}"}
 
|type="{}"}
 
$v(t = 50\, µ\text{s})$  =  { 7.608 3% }  $\text{V}$
 
$v(t = 50\, µ\text{s})$  =  { 7.608 3% }  $\text{V}$
Zeile 41: Zeile 41:
 
'''1.''' Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_{\rm E}(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_{\rm E}(f)$.  
 
'''1.''' Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_{\rm E}(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_{\rm E}(f)$.  
 
*Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei  $-\hspace{-0.08cm}5\, \text{kHz}$, $5 \,\text{kHz}$, $55 \,\text{kHz}$z und $65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner.  
 
*Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei  $-\hspace{-0.08cm}5\, \text{kHz}$, $5 \,\text{kHz}$, $55 \,\text{kHz}$z und $65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner.  
*Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \text{kHz}$, $-\hspace{-0.08cm}55 \text{kHz}$, $-\hspace{-0.08cm}5 \text{kHz}$ und  $5 \text{kHz}$.
+
*Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \,\text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \,\text{kHz}$, $-\hspace{-0.08cm}55 \,\text{kHz}$, $-\hspace{-0.08cm}5 \,\text{kHz}$ und  $5 \,\text{kHz}$.
 +
 
  
 
Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals:
 
Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals:
Zeile 49: Zeile 50:
 
Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$. Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$. Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$.
 
Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$. Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$. Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$.
  
'''2.''' Mit $A$ = 1 ist $υ(t) = q(t)$/2. Dagegen sind mit $A$ = 2 beide Signale gleich.
+
'''2.''' Mit $A = 1$ ist also $v(t)$ nur halb so groß wie  $q(t).$  ⇒  Mit $\underline{A = 2}$ sind beide Signale.
  
'''3.''' Die beiden Diraclinien bei $\pm f_T$ haben nun jeweils das Gewicht 1. Alle nachfolgend genannten Spektrallinien sind imaginär und betragsmäßig gleich 2 V. Die Faltung von $R(f)$ mit der rechten Diraclinie von $z_E(t)$ liefert Anteile bei –4 kHz (p: positiv), 6 kHz (n: negativ), 56 kHz (p) und 66 kHz (n).
+
'''3.''' Die beiden Diraclinien bei $\pm f_{\rm T}$ haben nun jeweils das Gewicht $1$. Alle nachfolgend genannten Spektrallinien sind imaginär und betragsmäßig gleich $2 \text{V}$.  
Dagegen führt die Faltung mit der linken Diracfunktion zu Spektrallinien bei –66 kHz (p), –56 kHz (n), –6 kHz (p) und 4 kHz (n), alle ebenfalls mit den (betragsmäßigen) Impulsgewichten 2 V. Unter Berücksichtigung des Tiefpasses verbleiben nur die vier Spektrallinien bei ±4 kHz und ±6 kHz. Das dazugehörige Zeitsignal lautet mit $f_4$ = 4 kHz und $f_6$ = 6 kHz:
+
*Die Faltung von $R(f)$ mit der rechten Diraclinie von $z_{\rm E}(t)$ liefert Anteile bei $-\hspace{-0.08cm}4\, \text{kHz}$, (p: positiv) $56 \,\text{kHz}$ (n: negativ), $56 \,\text{kHz}$ (p) und $66 \,\text{kHz}$ (n).  
 +
*Dagegen führt die Faltung mit der linken Diracfunktion zu Spektrallinien bei $-\hspace{-0.08cm}66 \,\text{kHz}$ (p), $-\hspace{-0.08cm}56 \,\text{kHz}$ (n), $-\hspace{-0.08cm}6 \,\text{kHz}$ (p) und $4 \,\text{kHz}$ (n), alle ebenfalls mit den (betragsmäßigen) Impulsgewichten $2 \text{V}$.  
 +
*Unter Berücksichtigung des Tiefpasses verbleiben nur die vier Spektrallinien bei $\pm 4 \,\text{kHz}$ und $\pm 6 \,\text{kHz}$. Das dazugehörige Zeitsignal lautet somit mit $f_4 = 4 \,\text{kHz}$ und $f_46 = 6 \,\text{kHz}$:
 
   
 
   
 
$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ).$$
 
$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ).$$
Zum Zeitpunkt t = 50 µs erhält man:
 
  
$$v( t) = 4\;{\rm{V}} \cdot \left( {\sin ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \right)\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$
+
Zum Zeitpunkt $t = 50\, µ\text{s}$ erhält man:
 +
 
 +
$$v( t = 50\, µ\text{s}) = 4\;{\rm{V}} \cdot \left( {\sin ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \right)\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 18. Januar 2017, 12:08 Uhr

Synchrondemodulator

Zur Rücksetzung eines amplitudenmodulierten Signals in den ursprünglichen Frequenzbereich verwendet man oft einen Synchrondemodulator:

  • Dieser multipliziert das AM-Eingangssignal $r(t)$ mit einem empfangsseitigen Trägersignal $z_{\rm E}(t)$, das sowohl hinsichtlich der Frequenz $f_{\rm T}$ als auch der Phase $\varphi_{\rm T}$ mit dem sendeseitigen Trägersignal $z_{\rm S}(t)$ übereinstimmen sollte.
  • Anschließend folgt ein rechteckförmiger Tiefpass zur Eliminierung aller spektralen Anteile oberhalb der Trägerfrequenz $f_{\rm T}$. Das Ausgangssignal des Synchrondemodulators nennen wir $v(t)$.

Das oben skizzierte Spektrum $R(f)$ des Empfangssignals $r(t)$ ist durch Zweiseitenband–Amplitudenmodulation eines sinusförmigen Quellensignals $q(t)$ mit der Frequenz $5\,\text{kHz}$ und der Amplitude $8\,\text{V}$ entstanden. Als sendeseitiges Trägersignal $z_{\rm S}(t)$ wurde ein Cosinussignal mit der Frequenz $30\,\text{kHz}$ verwendet.

Das Spektrum des empfangsseitigen Trägersignals $z_{\rm E}(t)$ besteht entsprechend der unteren Skizze aus zwei Diraclinien, jeweils mit dem Gewicht $A/2$. Da $z_{\rm E}(t)$ keine Einheit beinhalten soll, sind auch die Gewichte der Diracfunktionen dimensionslos.

Hinweise:


Fragebogen

1

Es gelte $f_{\rm T} = 30\,\text{kHz}$ und $A=1$. Berechnen Sie das Ausgangssignal $v(t)$. Welcher Signalwert tritt zum Zeitpunkt $t = 50\, µ\text{s}$ auf?

$v(t = 50\, µ\text{s})$  =

 $\text{V}$

2

Wie groß muss die Amplitude des empfangsseitigen Trägersignals $z_{\rm E}(t)$ gewählt werden, damit $v(t) = q(t)$ gilt?

$A$  =

3

Berechnen Sie das Ausgangssignal $v(t)$ unter den Voraussetzungen $A = 2$ und $f_{\rm T} = 31\,\text{kHz}$ = 31 kHz. Welcher Signalwert tritt zum Zeitpunkt$ t = 50\, µ\text{s}$ auf?

$v(t = 50\, µ\text{s})$  =

 $\text{V}$


Musterlösung

1. Benennen wir das Signal nach dem Multiplizierer mit $m(t) = r(t) \cdot z_{\rm E}(t)$, so ergibt sich das zugehörige Spektrum $M(f)$ als das Faltungsprodukt aus $R(f)$ und $Z_{\rm E}(f)$.

  • Die Faltung des Spektrums $R(f)$ mit der rechten Diraclinie bei $+30 \text{kHz}$ führt zu diskreten Spektrallinien bei $-\hspace{-0.08cm}5\, \text{kHz}$, $5 \,\text{kHz}$, $55 \,\text{kHz}$z und $65 \,\text{kHz}$. Diese sind alle imaginär und gegenüber den Impulsgewichten von $R(f)$ um den Faktor $A/2 = 0.5$ kleiner.
  • Die Faltung von $R(f)$ mit dem Dirac bei $-\hspace{-0.08cm}30 \,\text{kHz}$ ergibt Linien bei $-\hspace{-0.08cm}65 \,\text{kHz}$, $-\hspace{-0.08cm}55 \,\text{kHz}$, $-\hspace{-0.08cm}5 \,\text{kHz}$ und $5 \,\text{kHz}$.


Durch Überlagerung der beiden Zwischenresultate und Berücksichtigung des Tiefpassfilters, der die Linien bei $\pm 55 \text{kHz}$ und $\pm 65 \text{kHz}$unterdrückt, folgt somit für das Spektrum des Sinkensignals:

$$V( f) = - {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f - f_{\rm N} }) + {\rm{j}} \cdot 2\;{\rm{V}} \cdot \delta ( {f + f_{\rm N} } )\hspace{0.3cm}{\rm mit}\hspace{0.3cm}f_{\rm N} = 5\;{\rm kHz}.$$

Das Sinkensignal $v(t)$ ist also ein $5 \text{kHz}$–Sinussignal mit der Amplitude $4 \text{V}$. Der Zeitpunkt $t = 50\, µ\text{s}$ entspricht einem Viertel der Periodendauer $T_0 = 1/f_{\rm N} = 200\, µ\text{s}$. Somit ist hier das Sinkensignal maximal, also $\underline{4 \text{V}}$.

2. Mit $A = 1$ ist also $v(t)$ nur halb so groß wie $q(t).$  ⇒  Mit $\underline{A = 2}$ sind beide Signale.

3. Die beiden Diraclinien bei $\pm f_{\rm T}$ haben nun jeweils das Gewicht $1$. Alle nachfolgend genannten Spektrallinien sind imaginär und betragsmäßig gleich $2 \text{V}$.

  • Die Faltung von $R(f)$ mit der rechten Diraclinie von $z_{\rm E}(t)$ liefert Anteile bei $-\hspace{-0.08cm}4\, \text{kHz}$, (p: positiv) $56 \,\text{kHz}$ (n: negativ), $56 \,\text{kHz}$ (p) und $66 \,\text{kHz}$ (n).
  • Dagegen führt die Faltung mit der linken Diracfunktion zu Spektrallinien bei $-\hspace{-0.08cm}66 \,\text{kHz}$ (p), $-\hspace{-0.08cm}56 \,\text{kHz}$ (n), $-\hspace{-0.08cm}6 \,\text{kHz}$ (p) und $4 \,\text{kHz}$ (n), alle ebenfalls mit den (betragsmäßigen) Impulsgewichten $2 \text{V}$.
  • Unter Berücksichtigung des Tiefpasses verbleiben nur die vier Spektrallinien bei $\pm 4 \,\text{kHz}$ und $\pm 6 \,\text{kHz}$. Das dazugehörige Zeitsignal lautet somit mit $f_4 = 4 \,\text{kHz}$ und $f_46 = 6 \,\text{kHz}$:

$$v( t ) = 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_4 t} ) + 4\;{\rm{V}} \cdot \sin ( {2{\rm{\pi }}f_6 t} ).$$

Zum Zeitpunkt $t = 50\, µ\text{s}$ erhält man:

$$v( t = 50\, µ\text{s}) = 4\;{\rm{V}} \cdot \left( {\sin ( {0.4{\rm{\pi }}} ) + \sin ( {0.6{\rm{\pi }}} )} \right)\hspace{0.15 cm}\underline{ = 7.608\;{\rm{V}}}{\rm{.}}$$