Aufgaben:Aufgabe 3.1: Kausalitätsbetrachtungen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 26: Zeile 26:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz|Folgerungen_aus_dem_Zuordnungssatz]].
+
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Folgerungen_aus_dem_Zuordnungssatz|Folgerungen aus dem Zuordnungssatz]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  
Zeile 33: Zeile 33:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie kann <i>H</i><sub>1</sub>(<i>f</i>) charakterisiert werden?
+
{Wie kann $H_1(f)$ charakterisiert werden?
 
|type="[]"}
 
|type="[]"}
- <i>H</i><sub>1</sub>(<i>f</i>) beschreibt einen Tiefpass.
+
- $H_1(f)$ beschreibt einen Tiefpass.
+ <i>H</i><sub>1</sub>(<i>f</i>) beschreibt einen Hochpass.
+
+ $H_1(f)$ beschreibt einen Hochpass.
  
  
{Beschreibt <i>H</i><sub>1</sub>(<i>f</i>) ein kausales Netzwerk?
+
{Beschreibt $H_1(f)$ ein kausales Netzwerk?
 
|type="[]"}
 
|type="[]"}
 
+ Ja.
 
+ Ja.
Zeile 45: Zeile 45:
  
  
{Berechnen Sie die Übertragungsfunktion <i>H</i><sub>2</sub>(<i>f</i>). Welcher komplexe Wert ergibt sich für <i>f</i> = <i>f</i><sub>G</sub>?
+
{Berechnen Sie die Übertragungsfunktion $H_2(f)$. Welcher komplexe Wert ergibt sich für $f = f_{\rm G})$?
 
|type="{}"}
 
|type="{}"}
$Re{H_2(f = f_G)}$ = { 0 3% }
+
${\rm Re}{H_2(f = f_{\rm G})} \ =$ { 0. }
$Im{H_2(f = f_G)}$ = { 0.5 3% }
+
${\rm Im}{H_2(f = f_{\rm G})} \ =$ { 0.5 3% }
  
  
 
{Welche der nachfolgenden Aussagen treffen zu?
 
{Welche der nachfolgenden Aussagen treffen zu?
 
|type="[]"}
 
|type="[]"}
+ <i>H</i><sub>2</sub>(<i>f</i>) beschreibt ein kausales System.
+
+ $H_2(f)$ beschreibt ein kausales System.
+ (<i>x</i><sup>4</sup>&ndash;<i>x</i><sup>2</sup>)/(<i>x</i><sup>4</sup>+2<i>x</i><sup>2</sup>+1) und 2<i>x</i><sup>3</sup>/(<i>x</i><sup>4</sup>+2<i>x</i><sup>2</sup>+1) sind ein Hilbert&ndash;Paar.
+
+ $(x^4 - x^2)/(x^4 +2 x^2 + 1) und $2x^3/(x^4 +2 x^2 + 1) sind ein Hilbert&ndash;Paar.
- Für <i>n</i> > 2 ist die Kausalitätsbedingung nicht erfüllt.
+
- Für $n > 2$ ist die Kausalitätsbedingung nicht erfüllt.
  
  

Version vom 7. Februar 2017, 14:13 Uhr

Zwei Vierpolschaltungen

Die Grafik zeigt oben den Vierpol mit der Übertragungsfunktion $$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm},$$

wobei $f_{\rm G}$ die 3dB–Grenzfrequenz angibt: $$f_{\rm G} = \frac{R}{2 \pi \cdot L} \hspace{0.05cm}.$$

Durch Hintereinanderschalten $n$ gleich aufgebauter Vierpole $H_1(f)$ kommt man zu der Übertragungsfunktion $$H_n(f) = \left [H_1(f)\right ]^n =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^n}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^n} \hspace{0.05cm}.$$

Vorausgesetzt ist hierbei eine geeignete Widerstandsentkopplung, die aber zur Lösung dieser Aufgabe nicht von Bedeutung ist. Die untere Grafik zeigt zum Beispiel die Realisierung der Übertragungsfunktion $H_2(f)$.

In dieser Aufgabe wird ein solcher Vierpol im Hinblick auf seine Kausalitätseigenschaften betrachtet. Bei einem jeden kausalen System erfüllen der Real– und der Imaginärteil der Spektralfunktion $H(f)$ die Hilbert–Transformation, was durch das folgende Kurzzeichen ausgedrückt wird: $${\rm Im} \left\{ H(f) \right \} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad {\rm Re} \left\{ H(f) \right \}\hspace{0.05cm}.$$

Da die Hilbert–Transformation nicht nur für Übertragungsfunktionen, sondern auch für Zeitsignale wichtige Aussagen liefert, wird die Korrespondenz häufig durch die allgemeine Variable $x$ ausgedrückt, die je nach Anwendungsfall als normierte Frequenz oder als normierte Zeit zu interpretieren ist.

Hinweise:


Fragebogen

1

Wie kann $H_1(f)$ charakterisiert werden?

$H_1(f)$ beschreibt einen Tiefpass.
$H_1(f)$ beschreibt einen Hochpass.

2

Beschreibt $H_1(f)$ ein kausales Netzwerk?

Ja.
Nein.

3

Berechnen Sie die Übertragungsfunktion $H_2(f)$. Welcher komplexe Wert ergibt sich für $f = f_{\rm G})$?

${\rm Re}{H_2(f = f_{\rm G})} \ =$

${\rm Im}{H_2(f = f_{\rm G})} \ =$

4

Welche der nachfolgenden Aussagen treffen zu?

$H_2(f)$ beschreibt ein kausales System.
$(x^4 - x^2)/(x^4 +2 x^2 + 1) und $2x^3/(x^4 +2 x^2 + 1) sind ein Hilbert–Paar.
Für $n > 2$ ist die Kausalitätsbedingung nicht erfüllt.


Musterlösung

1.  Mit der angegebenen Übertragungsfunktion kann man nach dem Spannungsteilerprinzip
$$H_1(f = 0) = 0, \hspace{0.2cm}H_1(f \rightarrow \infty) = 1$$
berechnen ⇒ Es handelt sich um einen Hochpass. Für sehr niedrige Frequenzen stellt die Induktivität L einen Kurzschluss dar.
2.  Jedes reale Netzwerk ist kausal. Die Impulsantwort h(t) ist gleich dem Ausgangssignal y(t), wenn zum Zeitpunkt t = 0 am Eingang ein extrem kurzfristiger Impuls – ein sog. Diracimpuls – angelegt wird. Aus Kausalitätsgründen kann dann natürlich am Ausgang nicht schon für Zeiten t < 0 ein Signal auftreten:
$$y(t) = h(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
Formal lässt sich dies folgendermaßen zeigen: Die Hochpass–Übertragungsfunktion H1(f) kann wie folgt umgeformt werden:
$$H_1(f) = \frac{{\rm j}\cdot f/f_{\rm G}}{1+{\rm j}\cdot f/f_{\rm G}} = 1- \frac{1}{1+{\rm j}\cdot f/f_{\rm G}} \hspace{0.05cm}.$$
Die zweite Übertragungsfunktion beschreibt die zu H1(f) äquivalente Tiefpassfunktion, die im Zeitbereich zur Exponentialfunktion führt. Die „1” wird zu einer Diracfunktion. Mit T = 2π · fG gilt somit für t ≥ 0:
$$h_1(t) = \delta(t) - \frac{1}{T} \cdot {\rm e}^{-t/T} \hspace{0.05cm}.$$
Für t < 0 gilt dagegen h1(t) = 0, womit die Kausalität nachgewiesen wäre   ⇒   Antwort Ja.
3.  Die Hintereinanderschaltung zweier Hochpässe führt zu folgender Übertragungsfunktion:
$$H_2(f) = \left [H_1(f)\right ]^2 =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^2}{\left [1+{\rm j}\cdot f/f_{\rm G}\right ]^2} =\frac{\left [{\rm j}\cdot f/f_{\rm G}\right ]^2 \cdot \left [(1-{\rm j}\cdot f/f_{\rm G})\right ]^2} {\left [(1+{\rm j}\cdot f/f_{\rm G}) \cdot (1-{\rm j}\cdot f/f_{\rm G})\right ]^2}= \\ = \frac{(f/f_{\rm G})^4 - (f/f_{\rm G})^2 +{\rm j}\cdot 2 \cdot (f/f_{\rm G})^3)} {\left [1+(f/f_{\rm G})^2 \right ]^2}\hspace{0.05cm}.$$
Mit f = fG folgt daraus:
$$H_2(f = f_{\rm G}) = \frac{1 - 1 +{\rm j}\cdot 2} {4}= \frac{\rm j} {2}$$
$$\Rightarrow \hspace{0.5cm}{\rm Re} \left\{ H_2(f = f_{\rm G}) \right \} = 0, \hspace{0.4cm} {\rm Im} \left\{ H_2(f = f_{\rm G}) \right \} \hspace{0.15cm}\underline{ = 0.5}\hspace{0.05cm}.$$
4.  Richtig sind hier die beiden ersten Lösungsvorschläge. Da h1(t) = 0 für t < 0 ist, erfüllt auch die Faltungsoperation h2(t) = h1(t) ∗ h1(t) die Kausalitätsbedingung. Ebenso ergibt die n–fache Faltung eine kausale Impulsantwort:
$$h_n(t) = 0 \hspace{0.2cm}{\rm{f\ddot{u}r}} \hspace{0.2cm} t<0 \hspace{0.05cm}.$$
Bei kausaler Impulsantwort h2(t) hängen aber der Real– und der Imaginärteil der Spektralfunktion H2(f) über die Hilbert–Transformation zusammen. Mit der Abkürzung x = f/fG und dem Ergebnis aus der Teilaufgabe 3) gilt somit:
$$\frac{x^4- x^2}{x^4+2 x^2+1} \quad \bullet\!\!-\!\!\!-\!\!\!-\!\!\hspace{-0.05cm}\rightarrow\quad \frac{2x^3}{x^4+2 x^2+1}\hspace{0.05cm}.$$