Aufgaben:Aufgabe 2.2: Mehrstufensignale: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 13: | Zeile 13: | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
*Eine Zusammenfassung der Theamatik bietet das folgende Lernvideo: | *Eine Zusammenfassung der Theamatik bietet das folgende Lernvideo: | ||
− | + | :[[Bedeutung und Berechnung der Momente bei diskreten Zufallsgrößen]] | |
− | [[Bedeutung und Berechnung der Momente bei diskreten Zufallsgrößen]] | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie groß ist der lineare Mittelwert der Zufallsgröße | + | {Wie groß ist der lineare Mittelwert der Zufallsgröße $x$ für $M= 5$? |
|type="{}"} | |type="{}"} | ||
− | M=5: | + | $M=5\hspace{-0.1cm}: \hspace{0.3cm}m_x \ =$ { 2 3% } |
− | {Wie groß ist die Varianz der Zufallsgröße | + | {Wie groß ist die Varianz der Zufallsgröße $x$ allgemein und für $M= 5$? |
|type="{}"} | |type="{}"} | ||
− | M=5: | + | $M=5\hspace{-0.1cm}: \hspace{0.3cm}\sigma_x^2\ =$ { 2 3% } |
− | {Berechnen Sie den Mittelwert | + | {Berechnen Sie den Mittelwert $m_y$ der Zufallsgröße $y$ für $M= 5$. |
|type="{}"} | |type="{}"} | ||
− | M=5: | + | $M=5\hspace{-0.1cm}: \hspace{0.3cm}m_y \ =$ { 0. } $\ \rm V$ |
− | { | + | {Wie groß ist die Varianz der Zufallsgröße $y$? Berücksichtigen Sie dabei das Ergebnis aus (2). Welcher Wert ergibt sich wiederum für $M= 5$? |
|type="{}"} | |type="{}"} | ||
− | M=5: | + | $M=5\hspace{-0.1cm}: \hspace{0.3cm}\sigma_y^2\ =$ { 2 3% } $\ \rm V^2$ |
Version vom 2. März 2017, 14:22 Uhr
Das Rechtecksignal $x(t)$ sei dimensionslos und kann nur die Momentanwerte $0, 1, 2, ... , M-2, M-1$ mit gleicher Wahrscheinlichkeit annehmen. Die obere Grafik zeigt dieses Signal für den Sonderfall $M = 5$.
Auch das Rechtecksignal $y(t)$ sei$M$–stufig, aber mittelwertfrei und auf den Wertebereich von $y > -y_0$ bis $y < +y_0$ beschränkt. In der unteren Grafik sehen Sie das Signal $y(t)$, wiederum für die Stufenzahl $M = 5$. Setzen Sie für numerische Berechnungen $y_0 = 2\hspace{0.05cm}V$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Momente einer diskreten Zufallsgröße.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Eine Zusammenfassung der Theamatik bietet das folgende Lernvideo:
Fragebogen
Musterlösung
- 1. Man erhält durch Mittelung über alle möglichen Signalwerte für den linearen Mittelwert:
- $$m_{\it x}=\rm \sum_{\mu=0}^{\it M-{\rm 1}} \it p_\mu\cdot x_{\mu}=\frac{\rm 1}{\it M}\sum_{\mu=\rm 0}^{\it M-\rm 1}\mu=\frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M}{\rm 2}=\frac{\it M-\rm 1}{\rm 2}.$$
- Im Sonderfall M = 5 ergibt sich der lineare Mittelwert mx = 2.
- 2. Analog gilt für den quadratischen Mittelwert:
- $$m_{\rm 2\it x}= \rm \sum_{\mu=0}^{\it M -\rm 1}\it p_\mu\cdot x_{\mu}^{\rm 2}=\frac{\rm 1}{\it M}\sum_{\mu=\rm 0}^{\rm M-1}\mu^{\rm 2} = \frac{\rm 1}{\it M}\cdot\frac{(\it M-\rm 1)\cdot \it M\cdot(\rm 2\it M-\rm 1)}{\rm 6}\\ = \frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}.$$
- Im Sonderfall M = 5 ergibt sich der quadratische Mittelwert m2x = 6.
- Daraus kann die Varianz mit dem Satz von Steiner berechnet werden:
- $$\sigma_x^{\rm 2}=m_{\rm 2\it x}-m_x^{\rm 2}=\frac{(\it M-\rm 1)\cdot(\rm 2\it M-\rm 1)}{\rm 6}-\frac{(\it M-\rm 1)^{\rm 2}}{\rm 4}=\frac{\it M^{\rm 2}-\rm 1}{\rm 12}.$$
- Im Sonderfall M = 5 ergibt sich die Varianz σx2 = 2.
- 3. Aufgrund der Symmetrie von y gilt unabhängig von M:
- $$\it m_{\rm y}\hspace{0.15cm} \underline{=\rm 0}.$$
- 4. Zwischen x(t) und y(t) gilt folgender Zusammenhang:
- $$y(t)=\frac{\rm 2\cdot \it y_{\rm 0}}{\it M-\rm 1}\cdot [\it x(t)-m_x].$$
- Daraus folgt für die Varianzen:
- $$\it \sigma_y^{\rm 2}=\frac{\rm 4\cdot\it y_{\rm 0}^{\rm 2}}{(\it M - \rm 1)^{\rm 2}}\cdot\it \sigma_x^{\rm 2}=\frac{y_{\rm 0}^{\rm 2}\cdot (\it M^{\rm 2}-\rm 1)}{\rm 3\cdot (\it M-\rm 1)^{\rm 2}}=\frac{y_{\rm 0}^{\rm 2}\cdot (\it M+\rm 1)}{\rm 3\cdot (\it M-\rm 1)}.$$
- Im Sonderfall M = 5 ergibt sich für diese Varianz:
- $$\it \sigma_y^{\rm 2}= \frac {\it y_{\rm 0}^{\rm 2} \cdot {\rm 6}}{\rm 3 \cdot 4}\hspace{0.15cm} \underline{=\rm2\,V^{2}}.$$