Aufgaben:Aufgabe 3.6: Verrauschtes Gleichsignal: Unterschied zwischen den Versionen
Zeile 54: | Zeile 54: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Richtig sind somit die <u>Lösungsvorschläge 2 und 4</u>: | |
+ | *Das Gleichsignal $s(t)$ ist natürlich nicht gleichverteilt, vielmehr besteht dessen WDF aus nur einer Diracfunktion bei $m_x = 2\hspace{0.05cm}\rm V$ mit Gewicht $1$. | ||
+ | *Das Signal $n(t)$ ist gaußverteilt und mittelwertfrei ⇒ $m_n = 0$ | ||
+ | *Deshalb ist auch das Summensignal $x(t)$ gaußverteilt, aber nun mit Mittelwert $m_x = 2\hspace{0.05cm}\rm V$. | ||
+ | *Dieser rührt allein vom Gleichsignal $s(t) = 2\hspace{0.05cm}\rm V$ her. | ||
− | |||
− | |||
− | + | '''(2)''' Nach dem Satz von Steiner gilt: | |
+ | $$\sigma_{x}^{\rm 2}=m_{\rm 2 \it x}-m_{x}^{\rm 2}. $$ | ||
− | + | Der quadratische Mittelwert $m_{2x}$ ist gleich der (auf $1\hspace{0.05cm} \Omega$ bezogenen) Gesamtleistung $P_x = 5\hspace{0.05cm}\rm V^2$. Mit dem Mittelwert $m_x = 2\hspace{0.05cm}\rm V$ folgt daraus für die Streuung: $\sigma_{x} \hspace{0.15cm}\underline{= 1\hspace{0.05cm}\rm V}$. | |
− | |||
− | |||
− | |||
− | + | '''(3)''' Die Verteilungsfunktion (VTF) einer gaußverteilten Zufallsgröße mit Mittelwert $m_x$ und Streuung $\sigma_x$ lautet mit dem Gaußschen Fehlerintegral: | |
+ | $$F_x(r)=\rm\phi(\it\frac{r-m_x}{\sigma_x}\rm ).$$ | ||
− | + | Die Verteilungsfunktion an der Stelle $r = 0\hspace{0.05cm}\rm V$ ist gleich der Wahrscheinlichkeit, dass $x$ kleiner oder gleich $0\hspace{0.05cm}\rm V$ ist. Bei kontinuierlichen Zufallsgrößen gilt aber auch ${\rm Pr}(x \le r) = {\rm Pr}(x < r)$. Mit dem komplementären Gaußschen Fehlerintegral erhält man somit: | |
− | + | $$\rm Pr(\it x < \rm 0\,V)=\rm \phi(\rm \frac{-2\,V}{1\,V})=\rm Q(\rm 2)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$ | |
− | + | '''(4)''' Wegen der Symmetrie um den Wert 2V ergibt sich hierfür die gleiche Wahrscheinlichkeit, nämlich $\rm Pr(\it x > \rm 4\,V)\hspace{0.15cm}\underline{=\rm 2.27\%}$. | |
− | |||
− | : | + | '''(5)''' Die Wahrscheinlichkeit, dass $x$ größer ist als $3\hspace{0.05cm}\rm V$, ergibt sich zu |
+ | $$\rm Pr(\it x > \rm 3\,V) =\rm 1- \it F_x(\frac{\rm 3\,V-2\,V}{\rm 1V})=\rm Q(\rm 1)=\rm 0.1587.$$ | ||
+ | |||
+ | Für die gesuchte Wahrscheinlichkeit erhält man daraus: | ||
+ | $$\rm Pr(\rm 3\,V\le \it x \le \rm 4\,V)= \rm Pr(\it x > \rm 3\,V)- \rm Pr(\it x > \rm 4\,V) = 0.1587 - 0.0227\hspace{0.15cm}\underline{=\rm 13.6\%}. $$ | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 13. März 2017, 14:04 Uhr
Ein Gleichsignal $s(t) = 2\hspace{0.05cm}\rm V$ wird durch ein Rauschsignal $n(t)$ additiv überlagert.
- Im oberen Bild sehen Sie einen Ausschnitt des Summensignals $x(t)=s(t)+n(t).$
- Die Wahrscheinlichkeitsdichtefunktion (kurz WDF) des Signals $x(t)$ ist im unteren Bild dargestellt.
- Die (auf den Widerstand $1\hspace{0.05cm} \Omega$ bezogene) Gesamtleistung dieses Signals beträgt $P_x = 5\hspace{0.05cm}\rm V^2$.
Verwenden Sie zur Lösung das komplementäre Gaußsche Fehlerintegral ${\rm Q}(x)$. Nachfolgend finden Sie einige Werte dieser monoton abfallenden Funktion:
- $$\rm Q(0) = 0.5,\hspace{0.5cm} Q(1) = 0.1587, \hspace{0.5cm}\rm Q(2) = 0.0227, \hspace{0.5cm} Q(3) = 0.0013. $$
Hinweise:
- Die Aufgabe gehört zum Kapitel Gaußverteilte Zufallsgröße.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Das Gleichsignal $s(t)$ ist natürlich nicht gleichverteilt, vielmehr besteht dessen WDF aus nur einer Diracfunktion bei $m_x = 2\hspace{0.05cm}\rm V$ mit Gewicht $1$.
- Das Signal $n(t)$ ist gaußverteilt und mittelwertfrei ⇒ $m_n = 0$
- Deshalb ist auch das Summensignal $x(t)$ gaußverteilt, aber nun mit Mittelwert $m_x = 2\hspace{0.05cm}\rm V$.
- Dieser rührt allein vom Gleichsignal $s(t) = 2\hspace{0.05cm}\rm V$ her.
(2) Nach dem Satz von Steiner gilt:
$$\sigma_{x}^{\rm 2}=m_{\rm 2 \it x}-m_{x}^{\rm 2}. $$
Der quadratische Mittelwert $m_{2x}$ ist gleich der (auf $1\hspace{0.05cm} \Omega$ bezogenen) Gesamtleistung $P_x = 5\hspace{0.05cm}\rm V^2$. Mit dem Mittelwert $m_x = 2\hspace{0.05cm}\rm V$ folgt daraus für die Streuung: $\sigma_{x} \hspace{0.15cm}\underline{= 1\hspace{0.05cm}\rm V}$.
(3) Die Verteilungsfunktion (VTF) einer gaußverteilten Zufallsgröße mit Mittelwert $m_x$ und Streuung $\sigma_x$ lautet mit dem Gaußschen Fehlerintegral:
$$F_x(r)=\rm\phi(\it\frac{r-m_x}{\sigma_x}\rm ).$$
Die Verteilungsfunktion an der Stelle $r = 0\hspace{0.05cm}\rm V$ ist gleich der Wahrscheinlichkeit, dass $x$ kleiner oder gleich $0\hspace{0.05cm}\rm V$ ist. Bei kontinuierlichen Zufallsgrößen gilt aber auch ${\rm Pr}(x \le r) = {\rm Pr}(x < r)$. Mit dem komplementären Gaußschen Fehlerintegral erhält man somit: $$\rm Pr(\it x < \rm 0\,V)=\rm \phi(\rm \frac{-2\,V}{1\,V})=\rm Q(\rm 2)\hspace{0.15cm}\underline{=\rm 2.27\%}.$$
(4) Wegen der Symmetrie um den Wert 2V ergibt sich hierfür die gleiche Wahrscheinlichkeit, nämlich $\rm Pr(\it x > \rm 4\,V)\hspace{0.15cm}\underline{=\rm 2.27\%}$.
(5) Die Wahrscheinlichkeit, dass $x$ größer ist als $3\hspace{0.05cm}\rm V$, ergibt sich zu $$\rm Pr(\it x > \rm 3\,V) =\rm 1- \it F_x(\frac{\rm 3\,V-2\,V}{\rm 1V})=\rm Q(\rm 1)=\rm 0.1587.$$
Für die gesuchte Wahrscheinlichkeit erhält man daraus: $$\rm Pr(\rm 3\,V\le \it x \le \rm 4\,V)= \rm Pr(\it x > \rm 3\,V)- \rm Pr(\it x > \rm 4\,V) = 0.1587 - 0.0227\hspace{0.15cm}\underline{=\rm 13.6\%}. $$