Aufgaben:Aufgabe 4.4: Herkömmliche Entropie und differenzielle Entropie: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(kein Unterschied)

Version vom 5. April 2017, 10:27 Uhr

P ID2878 Inf A 4 4.png

Wir betrachten die zwei wertkontinuierlichen Zufallsgrößen X und Y mit den Wahrscheinlichkeitsdichtefunktionen fX(x) und fY(y). Für diese Zufallsgrößen kann man

  • die herkömmlichen Entropien H(X), H(Y) nicht angeben,
  • jedoch aber die differentiellen Entropien h(X) und h(Y).

Wir betrachten außerdem zwei wertdiskrete Zufallsgrößen:

  • ZX,M ergibt sich durch (geeignete) Quantisierung der Zufallsgröße X mit der Quantisierungsstufenzahl M  ⇒  Quantisierungsintervallbreite Δ = 0.5/M.
  • Die Zufallsgröße ZY,M ergibt sich nach Quantisierung der wertkontinuierlichen Zufallsgröße Y mit der Quantisierungsstufenzahl M  ⇒  Quantisierungsintervallbreite Δ = 2/M.

Die Wahrscheinlichkeitsdichtefunktionen dieser diskreten Zufallsgrößen setzen sich jeweils aus M Diracfunktionen zusammen, deren Impulsgewichte durch die Intervallflächen der zugehörigen wertkontinuierlichen Zufallsgrößen gegeben sind. Daraus lassen sich die Entropien H(ZX,M) und H(ZY,M) in herkömmlicher Weise (entsprechend Kapitel 3) bestimmen.

Im Theorieteil wurde auch eine Näherung angegeben. Beispielsweise gilt: $$H(Z_{X, \hspace{0.05cm}M}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X)\hspace{0.05cm}. $$ Sie werden im Laufe der Aufgabe feststellen, dass bei rechteckförmiger WDF ⇒ Gleichverteilung diese „Näherung” genau das gleiche Ergebnis liefert wie die direkte Berechnung. Aber im allgemeinen Fall – zum Beispiel bei dreieckförmiger WDF – stellt obige Gleichung tatsächlich nur eine Näherung dar, die erst im Grenzfall Δ → 0 mit der tatsächlichen Entropie H(ZX,M) übereinstimmt.

Hinweis: Die Aufgabe gehört zum Themengebiet von Kapitel 4.1

Fragebogen

1

Berechnen Sie die differentielle Entropie h(X).

$ h(X)$ =

2

Berechnen Sie die differentielle Entropie h(Y).

$ h(Y)$ =

3

Berechnen Sie die Entropie der wertdiskreten Zufallsgrößen ZX, M = 4.

$direkte Berechnung: H(Z_{ X, M = 4})$ =

$mit Näherung: H(Z_{ X, M = 4})$ =

4

Berechnen Sie die Entropie der wertdiskreten Zufallsgröße ZY, M = 4.

$mit Näherung: H(Z_{ Y, M = 4})$ =

5

Berechnen Sie die Entropie der wertdiskreten Zufallsgröße ZY, M = 8.

$mit Näherung: H(Z_{ Y, M = 8})$ =

6

Welche der folgenden Aussagen sind zutreffend?

Die Entropie einer diskreten Zufallsgröße Z ist stets H(Z) ≥ 0.
Die differentielle Entropie einer kontinuierlichen Zufallsgröße X ist stets h(X) ≥ 0.


Musterlösung

a)  Gemäß der entsprechenden Theorieseite gilt mit xmin = 0 und xmax = 1/2: $$h(X) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (1/2) \hspace{0.15cm}\underline{= - 1\,{\rm bit}}\hspace{0.05cm}.$$

b)  Mit ymin = –1 und ymax = +1 ergibt sich für die differentielle Entropie der Zufallsgröße Y: $$h(Y) = {\rm log}_2 \hspace{0.1cm} (x_{\rm max} - x_{\rm min}) = {\rm log}_2 \hspace{0.1cm} (2) \hspace{0.15cm}\underline{= + 1\,{\rm bit}}\hspace{0.05cm}. $$

c)  Die nachfolgende Grafik verdeutlicht die bestmögliche Quantisierung der Zufallsgröße X mit der Quantisierungsstufenzahl M = 4  ⇒  Zufallsgröße ZX, M = 4:

P ID2879 Inf A 4 4c.png
  • Die Intervallbreite ist hier gleich Δ = 0.5/4 = 1/8.
  • Die möglichen Werte (jeweils in der Intervallmitte) sind z ∈ {0.0625, 0.1875, 0.3125, 0.4375}.
  • Die direkte Berechnung der Entropie ergibt mit der Wahrscheinlichkeitsfunktion PZ(Z) = [1/4, ... , 1/4]:

$$H(Z_{X, M = 4}) = {\rm log}_2 \hspace{0.1cm} (4) \hspace{0.15cm}\underline{= 2\,{\rm bit}} \hspace{0.05cm}.$$

  • Mit der Näherung erhält man unter Berücksichtigung des Ergebnisses der Teilaufgabe (a):

$$H(Z_{X, M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(X) = 3\,{\rm bit} +(- 1\,{\rm bit})\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}. $$ Hinweis: Nur bei der Gleichverteilung liefert die Näherung genau das gleiche Ergebnis.

d)  Aus der zweiten Grafik erkennt man die Gemeinsamkeiten / Unterschiede zur Teilaufgabe (c):

P ID2880 Inf A 4 4d.png
  • Der Quantisierungsparameter ist nun Δ = 2/4 = 1/2.
  • Die möglichen Werte sind nun z ∈ {±0.75, ±0.25}.
  • Somit liefert hier die „Näherung” (ebenso wie die direkte Berechnung) das Ergebnis:

$$H(Z_{Y, M = 4}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y)$$ $$ =\ \hspace{-0.15cm} 1\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 2\,{\rm bit}}\hspace{0.05cm}.$$

P ID2881 Inf A 4 4e.png

e)  Im Gegensatz zur Teilaufgabe (d) gilt nun Δ = 1/4. Daraus folgt für die „Näherung”: $$H(Z_{Y, M = 8}) \approx -{\rm log}_2 \hspace{0.1cm} ({\it \Delta}) + h(Y)$$ $$ =\ \hspace{-0.15cm} 2\,{\rm bit} + 1\,{\rm bit}\hspace{0.15cm}\underline{= 3\,{\rm bit}}\hspace{0.05cm}.$$ Wieder gleiches Ergebnis bei direkter Berechnung.

f)  Richtig ist nur die Aussage 1:

  • Die Entropie H(Z) einer diskreten Zufallsgröße Z = {z1, ... , zM} kann nie negativ werden. Der Grenzfall H(Z) = 0 ergibt sich z.B. für Pr(Z = z1) = 1 und Pr(Z = zμ) = 0 für 2 ≤ μ ≤ M.
  • Dagegen kann die differentielle Entropie h(X) einer kontinuierlichen Zufallsgröße X negativ (Teilaufgabe a), positiv (Teilaufgabe b) oder auch h(X) = 0 (z.B. xmin = 0, xmax = 1) sein.