Aufgaben:Aufgabe 4.6: AWGN–Kanalkapazität: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 83: Zeile 83:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
<b>a)</b>&nbsp;&nbsp;Die Gleichung für die AWGN&ndash;Kanalkapazität in &bdquo;bit&rdquo; lautet:
'''2.'''
+
$$C_{\rm bit} = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{P_N} \right )\hspace{0.05cm}.$$
'''3.'''
+
Mit <i>C</i><sub>bit</sub> = 2 ergibt sich daraus:
 +
$$4 \stackrel{!}{=} {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{P_N} \right )
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 + \frac{P_X}{P_N} \stackrel {!}{=} 2^4 = 16
 +
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_X = 15 \cdot P_N
 +
\hspace{0.15cm}\underline{= 15\,{\rm mW}}
 +
\hspace{0.05cm}. $$
 +
<b>b)</b>&nbsp;&nbsp;Richtig sind die <u>Lösungsvorschläge 1 bis 4</u>. Begründung:
 +
:* Für <i>P<sub>X</sub></i> < 15 mW wird die Transinformation <i>I</i>(<i>X</i>; <i>Y</i>) stets kleiner als 2 bit sein, unabhängig von allen anderen Gegebenheiten.
 +
:* Mit <i>P<sub>X</sub></i> = 15 mW ist die maximale Transinformation <i>I</i>(<i>X</i>; <i>Y</i>) = 2 bit nur  erreichbar, wenn die Eingangsgröße <i>X</i> gaußverteilt ist.  Die Ausgangsgröße <i>Y</i> ist dann ebenfalls gaußverteilt.
 +
:* Weist die Zufallsgröße <i>X</i> einen Gleichanteil <i>m<sub>X</sub></i> auf, so ist die Varianz <i>&sigma;<sub>X</sub></i><sup>2</sup> = <i>P<sub>X</sub></i> &ndash; <i>m<sub>X</sub></i><sup>2</sup> bei gegebenem <i>P<sub>X</sub></i> &nbsp;kleiner, und es gilt <i>I</i>(<i>X</i>;<i>Y</i>) = 1/2 &middot; log<sub>2</sub> (1 + <i>&sigma;<sub>X</sub></i><sup>2</sup>/<i>P<sub>N</sub></i>) < 2 bit.
 +
:*  Voraussetzung für die gegebene Kanalkapazitätsgleichung ist, dass <i>X</i> und <i>N</i> unkorreliert sind. Wären dagegen die Zufallsgrößen <i>X</i> und <i>Y</i> unkorreliert, so ergäbe sich <i>I</i>(<i>X</i>; <i>Y</i>) = 0.
 +
<b>c)</b>&nbsp;&nbsp;Die angegebene Gleichung für die differentielle Entropie macht nur bei dimensionsloser Leistung Sinn. Mit der vorgeschlagenen Normierung erhält man:
 
'''4.'''
 
'''4.'''
 
'''5.'''
 
'''5.'''

Version vom 5. April 2017, 11:50 Uhr

P ID2899 Inf A 4 6.png

Wir gehen vom AWGN-Kanalmodell aus:

  • X kennzeichnet den Eingang (Sender).
  • N steht für eine gaußverteilte Störung.
  • Y = X + N beschreibt den Ausgang (Empfänger) bei additiver Störung.

Für die Wahrscheinlichkeitsdichtefunktion der Störung gelte: $$f_N(n) = \frac{1}{\sqrt{2\pi \sigma_N^2}} \cdot {\rm exp}\left [ - \hspace{0.05cm}\frac{n^2}{2 \sigma_N^2} \right ] \hspace{0.05cm}.$$ Da die Zufallsgröße N mittelwertfrei ist  ⇒  mN = 0, kann man die Varianz σN2 mit der Leistung PN gleichsetzen. In diesem Fall ist die differentielle Entropie der Zufallsgröße N wie folgt angebbar (mit Pseudo–Einheit „bit”): $$h(N) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 2\pi {\rm e} \cdot P_N \right )\hspace{0.05cm}.$$ In dieser Aufgabe wird PN = 1 mW vorgegeben. Dabei ist zu beachten:

  • Die Leistung PN in obiger Gleichung muss wie die Varianz σN2 dimensionslos sein.
  • Um mit dieser Gleichung arbeiten zu können, muss die physikalische Größe PN geeignet normiert werden, zum Beispiel entsprechend PN = 1 mW  ⇒  P'N = 1.
  • Bei anderer Normierung, beispielsweise PN = 1 mW  ⇒  P'N = 0.001 ergäbe sich für h(N) ein völlig anderer Zahlenwert.

Weiter können Sie bei der Lösung dieser Aufgabe berücksichtigen:

  • Die Kanalkapazität ist definiert als die maximale Transinformation zwischen Eingang X und Ausgang Y bei bestmöglicher Eingangsverteilung:

$$C = \max_{\hspace{-0.15cm}f_X:\hspace{0.05cm} {\rm E}[X^2] \le P_X} \hspace{-0.2cm} I(X;Y) \hspace{0.05cm}.$$

  • Die Kanalkapazität des AWGN–Kanals lautet:

$$C_{\rm AWGN} = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{P_N} \right ) = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P\hspace{0.05cm}'_{\hspace{-0.05cm}X}}{P\hspace{0.05cm}'_{\hspace{-0.05cm}N}} \right )\hspace{0.05cm}.$$ Daraus ist ersichtlich, dass die die Kanalkapazität C und auch die Transinformation I(X; Y) im Gegensatz zu den differentiellen Entropien unabhängig von obiger Normierung ist.

  • Bei gaußförmiger Stör–WDF fN(n) führt eine ebenfalls gaußförmige Eingangs–WDF fX(x) zur maximalen Transinformation und damit zur Kanalkapazität.

Hinweis: Die Aufgabe gehört zum Themengebiet von Kapitel 4.2.

Fragebogen

1

Welche Sendeleistung ist für C = 2 bit erforderlich?

$C = 2 bit: PX$ =

2

Unter welchen Voraussetzungen ist I(X; Y) = 2 bit überhaupt erreichbar?

PX ist wie unter (a) ermittelt oder größer.
Die Zufallsgröße X ist gaußverteilt.
Die Zufallsgröße X ist mittelwertfrei.
Die Zufallsgrößen X und N sind unkorreliert.
Die Zufallsgrößen X und Y sind unkorreliert.

3

Berechnen Sie die differentiellen Entropien der Zufallsgrößen N, X und Y bei geeigneter Normierung, zum Beispiel PN = 1 mW  ⇒  P′N = 1.

$h(N)$ =

$h(X)$ =

$h(Y)$ =

4

Wie lauten die weiteren informationstheoretischen Beschreibungsgrößen?

$h(Y|X)$ =

$h(X|Y)$ =

$h(XY)$ =

5

Welche Größen ergäben sich bei gleichem PX  im Grenzfall P′N  →  0?

$h(X)$ =

$h(Y)$ =

$h(Y|X)$ =

$h(X|Y)$ =

$I(X;Y)$ =


Musterlösung

a)  Die Gleichung für die AWGN–Kanalkapazität in „bit” lautet: $$C_{\rm bit} = {1}/{2} \cdot {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{P_N} \right )\hspace{0.05cm}.$$ Mit Cbit = 2 ergibt sich daraus: $$4 \stackrel{!}{=} {\rm log}_2\hspace{0.05cm}\left ( 1 + \frac{P_X}{P_N} \right ) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 1 + \frac{P_X}{P_N} \stackrel {!}{=} 2^4 = 16 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_X = 15 \cdot P_N \hspace{0.15cm}\underline{= 15\,{\rm mW}} \hspace{0.05cm}. $$ b)  Richtig sind die Lösungsvorschläge 1 bis 4. Begründung:

  • Für PX < 15 mW wird die Transinformation I(X; Y) stets kleiner als 2 bit sein, unabhängig von allen anderen Gegebenheiten.
  • Mit PX = 15 mW ist die maximale Transinformation I(X; Y) = 2 bit nur erreichbar, wenn die Eingangsgröße X gaußverteilt ist. Die Ausgangsgröße Y ist dann ebenfalls gaußverteilt.
  • Weist die Zufallsgröße X einen Gleichanteil mX auf, so ist die Varianz σX2 = PXmX2 bei gegebenem PX  kleiner, und es gilt I(X;Y) = 1/2 · log2 (1 + σX2/PN) < 2 bit.
  • Voraussetzung für die gegebene Kanalkapazitätsgleichung ist, dass X und N unkorreliert sind. Wären dagegen die Zufallsgrößen X und Y unkorreliert, so ergäbe sich I(X; Y) = 0.

c)  Die angegebene Gleichung für die differentielle Entropie macht nur bei dimensionsloser Leistung Sinn. Mit der vorgeschlagenen Normierung erhält man: 4. 5. 6. 7.