Rechnen mit komplexen Zahlen (Lernvideo): Unterschied zwischen den Versionen
Aus LNTwww
Zeile 16: | Zeile 16: | ||
− | Dieses Lernvideo wurde 2006 am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert.<br> | + | Dieses Lernvideo wurde 2006 am [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik] der [https://www.tum.de/ Technischen Universität München] konzipiert und realisiert.<br> |
Buch und Regie: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._Norbert_Hanik_.28am_LNT_von_1989-1995_und_seit_2004.29|Norbert Hanik]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]], Sprecher: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._Norbert_Hanik_.28am_LNT_von_1989-1995_und_seit_2004.29|Norbert Hanik]], Realisierung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Franz_Kohl_.28Diplomarbeit_LB_2004.2C_danach_freie_Mitarbeit_bis_2006.29|Franz Kohl]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Manfred_J.C3.BCrgens_.28am_LNT_von_1981-2010.29|Manfred Jürgens]]. | Buch und Regie: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._Norbert_Hanik_.28am_LNT_von_1989-1995_und_seit_2004.29|Norbert Hanik]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]], Sprecher: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._Norbert_Hanik_.28am_LNT_von_1989-1995_und_seit_2004.29|Norbert Hanik]], Realisierung: [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Franz_Kohl_.28Diplomarbeit_LB_2004.2C_danach_freie_Mitarbeit_bis_2006.29|Franz Kohl]] und [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Manfred_J.C3.BCrgens_.28am_LNT_von_1981-2010.29|Manfred Jürgens]]. | ||
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können. | Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28am_LNT_seit_2014.29|Tasnád Kernetzky]] und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können. |
Version vom 3. Mai 2017, 14:21 Uhr
Inhalt
- Reelle Zahlenmengen und Zahlenstrahl: Ganze Zahlen, natürliche ..., reelle ..., rationale ..., irrationale ... (Dauer 3:14)
- Darstellung komplexer Zahlen und Komplexe Ebene: Realteil, Imaginärteil, Betrag, Phase, Satz von Euler (Dauer 2:00)
- Rechenregeln für komplexe Zahlen: Summe, Differenz, Produkt, Quotient, Konjugiert-komplexe, Quadrat, Quadratwurzel (Dauer 6:36)
- Gesamtdauer 11:50
Erkannte Fehler
- Bei (10:30) muss es heißen $d = z - z^\star = 2 {\rm j} \cdot y$ , wenn $z = x + {\rm j} \cdot y$ ist. Im Video wurde die imaginäre Einheit ${\rm j}$ vergessen.
Dieses Lernvideo wurde 2006 am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
Buch und Regie: Norbert Hanik und Günter Söder, Sprecher: Norbert Hanik, Realisierung: Franz Kohl und Manfred Jürgens.
Im Zuge der LNTwww-Neugestaltung (Version 3) wurden diese Lernvideos 2016/2017 durch Tasnád Kernetzky und einigen Studenten in moderne Formate konvertiert, um von möglichst vielen Browsern wie Firefox, Chrome und Safari, als auch von Smartphones wiedergegeben werden zu können.