Aufgaben:Aufgabe 1.5: Binäre Markovquelle: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 57: Zeile 57:
 
{Geben Sie die dazugehörige Entropienäherung erster Ordnung an.
 
{Geben Sie die dazugehörige Entropienäherung erster Ordnung an.
 
|type="{}"}
 
|type="{}"}
$H_1  \ = $ { 0.918 3% } $\ \rm bit/Symbol$
+
$H_1  \ = $ { 0.918 0.5% } $\ \rm bit/Symbol$
  
  
 
{Welche Entropie $H = H_{\rm M}$ besitzt diese Markovquelle mit $p = 1/4$ und $q = 1/2$?
 
{Welche Entropie $H = H_{\rm M}$ besitzt diese Markovquelle mit $p = 1/4$ und $q = 1/2$?
 
|type="{}"}
 
|type="{}"}
$H \  =$ { 0.875 3% } $\ \rm bit/Symbol$
+
$H \  =$ { 0.875 0.5% } $\ \rm bit/Symbol$
  
  
Zeile 68: Zeile 68:
 
|type="{}"}
 
|type="{}"}
 
$H_2 \  =$ { 0.897 0.5% } $\ \rm bit/Symbol$
 
$H_2 \  =$ { 0.897 0.5% } $\ \rm bit/Symbol$
$H_3 \  =$ { 0.889 3% } $\ \rm bit/Symbol$
+
$H_3 \  =$ { 0.889 0.5% } $\ \rm bit/Symbol$
$H_4 \  =$ { 0.886 3% } $\ \rm bit/Symbol$
+
$H_4 \  =$ { 0.886 0.5% } $\ \rm bit/Symbol$
  
  
 
{Welche Entropie $H = H_{\rm M}$ besitzt die Markovquelle mit $p = 1/4$ und $q = 3/4$?
 
{Welche Entropie $H = H_{\rm M}$ besitzt die Markovquelle mit $p = 1/4$ und $q = 3/4$?
 
|type="{}"}
 
|type="{}"}
$H \  =$  { 0.811 1% } $\ \rm bit/Symbol$
+
$H \  =$  { 0.811 0.5% } $\ \rm bit/Symbol$
  
  

Version vom 1. Mai 2017, 15:34 Uhr

Binäres Markovdiagramm

Die Aufgabe 1.4 hat gezeigt, dass die Berechnung der Entropie bei einer gedächtnisbehafteten Quelle sehr aufwändig sein kann. Man muss dann zunächst (sehr viele) Entropienäherungen $H_k$ für $k$–Tupel berechnen und kann erst dann mit dem Grenzübergang $k \to \infty$ die Quellenentropie ermitteln:

$$H = \lim_{k \rightarrow \infty } H_k \hspace{0.05cm}.$$

Oft tendiert dabei $H_k$ nur sehr langsam gegen den Grenzwert $H$.

Der Rechengang wird drastisch reduziert, wenn die Nachrichtenquelle Markoveigenschaften besitzt. Die Grafik zeigt das Übergangsdiagramm für eine binäre Markovquelle mit den zwei Zuständen (Symbolen) $\rm A$ und $\rm B$.

  • Dieses ist durch die beiden bedingten Wahrscheinlichkeiten $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} = p$ und $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = q$ eindeutig bestimmt.
  • Die bedingten Wahrscheinlichkeiten $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}$ und $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}$ sowie die Symbolwahrscheinlichkeiten $p_{\rm A}$ und $p_{\rm B}$ lassen sich daraus ermitteln.


Die Entropie der binären Markovkette (mit der Einheit „bit/Symbol”) lautet dann:

$$H = H_{\rm M} = p_{\rm AA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm BA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}} \hspace{0.05cm}.$$

Bei dieser Gleichung ist zu beachten, dass im Argument des Logarithmus dualis jeweils die bedingten Wahrscheinlichkeiten $p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}$, $p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}$, ... einzusetzen sind, während für die Gewichtung die Verbundwahrscheinlichkeiten $p_{\rm AA}$, $p_{\rm AB}$, ... zu verwenden sind.

Mit der Entropienäherung erster Ordnung,

$$H_1 = p_{\rm A} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A}} + p_{\rm B} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B}} \hspace{0.5cm}({\rm Einheit\hspace{-0.1cm}: \hspace{0.1cm}bit/Symbol})\hspace{0.05cm},$$

sowie der oben angegebenen (tatsächlichen) Entropie $H = H_{\rm M}$ lassen sich bei einer Markovquelle auch alle weiteren Entropienäherungen ($k = 2,, 3$, ...) direkt berechnen:

$$H_k = \frac{1}{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}] \hspace{0.05cm}.$$


Hinweise:

  • Die Aufgabe gehört zum Kapitel Nachrichtenquellen mit Gedächtnis.
  • Bezug genommen wird insbesondere auch auf die beiden Seiten Schnittmenge und Bedingte Wahrscheinlichkeit.
  • Mit Ausnahme der Teilaufgabe (6) gelte stets $p = 1/4$ und $q = 1/2$.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Für die (ergodischen) Symbolwahrscheinlichkeiten einer Markovkette erster Ordnung gilt:
$$ p_{\rm A} = \frac {p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} { p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} + p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} \hspace{0.05cm}, \hspace{0.3cm} p_{\rm B} = \frac {p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} { p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} + p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} \hspace{0.05cm}.$$


Fragebogen

1

Geben Sie die Übergangswahrscheinlichkeiten für $p = 1/4$ und $q = 1/2$ an.

$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \ = $

$p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \ = $

2

Wie groß sind die Symbolwahrscheinlichkeiten? Es gelte weiterhin $p = 1/4$ und $q = 1/2$.

$p_{\rm A} \ = $

$p_{\rm B} \ = $

3

Geben Sie die dazugehörige Entropienäherung erster Ordnung an.

$H_1 \ = $

$\ \rm bit/Symbol$

4

Welche Entropie $H = H_{\rm M}$ besitzt diese Markovquelle mit $p = 1/4$ und $q = 1/2$?

$H \ =$

$\ \rm bit/Symbol$

5

Welche Näherungen $H_k$ ergeben sich aufgrund der Markoveigenschaften?

$H_2 \ =$

$\ \rm bit/Symbol$
$H_3 \ =$

$\ \rm bit/Symbol$
$H_4 \ =$

$\ \rm bit/Symbol$

6

Welche Entropie $H = H_{\rm M}$ besitzt die Markovquelle mit $p = 1/4$ und $q = 3/4$?

$H \ =$

$\ \rm bit/Symbol$


Musterlösung

P ID2757 Inf A 1 5.png
1.  Hier gilt für die Übergangswahrscheinlichkeiten:
$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} = \hspace{0.1cm} 1 - p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}= 1 - q \hspace{0.15cm} \underline {= 0.5} \hspace{0.05cm},\\ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.1cm} = \hspace{0.1cm} 1 - p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}= 1 - p \hspace{0.15cm} \underline {= 0.75} \hspace{0.05cm}.$$
Nach A sind A und B gleichwahrscheinlich. Nach B tritt B sehr viel häufiger als A auf.
2.  Entsprechend den angegebenen Gleichungen gilt:
$$p_{\rm A}= \frac{p}{p+q} = \frac{0.25}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.333} \hspace{0.05cm}, \hspace{2cm}$$
$$ p_{\rm B} = \frac{q}{p+q} = \frac{0.50}{0.25 + 0.50} \hspace{0.15cm} \underline {= 0.667} \hspace{0.05cm}.$$
3.  Mit den unter (b) berechneten Wahrscheinlichkeiten gilt:
$$H_{\rm 1} = H_{\rm bin}(p_{\rm A}) = 1/3 \cdot {\rm log}_2\hspace{0.01cm} (3) + 2/3 \cdot {\rm log}_2\hspace{0.01cm} (1.5) = 1.585 - 2/3\hspace{0.15cm} \underline {= 0.918 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$
4.  Die Entropie der Markovquelle lautet entsprechend der Angabe
$$H = p_{\rm AA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm BA} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B}} + p_{\rm BB} \cdot {\rm log}_2\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B}} \hspace{0.05cm}.$$
Für die Verbundwahrscheinlichkeiten gilt:
$$p_{\rm AA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = (1-q) \cdot \frac{p}{p+q} = \frac{1/2 \cdot 1/4}{3/4} = \frac{1}{6} \hspace{0.05cm},\\ p_{\rm AB} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \cdot p_{\rm A} = q \cdot \frac{p}{p+q} = \frac{1/2 \cdot 1/4}{3/4} = \frac{1}{6} \hspace{0.05cm},\\ p_{\rm BA} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = p \cdot \frac{q}{p+q} = p_{\rm AB} = \frac{1}{6} \hspace{0.05cm},\\ p_{\rm BB} \hspace{0.1cm} = \hspace{0.1cm} p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \cdot p_{\rm B} = (1-p) \cdot \frac{q}{p+q} = \frac{3/4 \cdot 1/2}{3/4} = \frac{1}{2} $$
$$\Rightarrow\hspace{0.3cm} H \hspace{0.1cm} = \hspace{0.1cm} 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (2) + 1/6 \cdot {\rm log}_2\hspace{0.01cm} (4) + 1/2 \cdot {\rm log}_2\hspace{0.1cm} (4/3) = \\ \hspace{0.1cm} = \hspace{0.1cm} 1/6 + 1/6 + 2/6 + 1 - 1/2 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.875 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$
5.  Allgemein gilt mit HM = H für die k–Entropienäherung:
$$H_k = \frac{1}{k} \cdot [ H_{\rm 1} + (k-1) \cdot H_{\rm M}] \hspace{0.05cm}.$$
Daraus folgt:
$$H_2 \hspace{0.1cm} = \hspace{0.1cm} \frac{1}{2} \cdot [ 0.918 + 1 \cdot 0.875] \hspace{0.15cm} \underline {= 0.897 \,{\rm bit/Symbol}} \hspace{0.05cm},\\ H_3 \hspace{0.1cm} = \hspace{0.1cm} \frac{1}{3} \cdot [ 0.918 + 2 \cdot 0.875] \hspace{0.15cm} \underline {= 0.889 \,{\rm bit/Symbol}} \hspace{0.05cm},\\ H_4 \hspace{0.1cm} = \hspace{0.1cm} \frac{1}{4} \cdot [ 0.918 + 3 \cdot 0.875] \hspace{0.15cm} \underline {= 0.886 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$
P ID2251 Inf A 1 5f.png
6.  Mit dem neuen Parametersatz (p = 1/4, q = 3/4) erhält man für die Symbolwahrscheinlichkeiten: pA = 1/4 und pB = 3/4. Dieser Sonderfall führt demnach zu statistisch unabhängigen Symbolen:
$$ p_{\rm A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.05cm}, \hspace{0.2cm} p_{\rm B} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} = p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}B} \hspace{0.05cm}.$$
Damit ist die Entropie H identisch mit der Entropienäherung H1:
$$H = H_{\rm 1} = 1/4 \cdot {\rm log}_2\hspace{0.01cm} (4) + 3/4 \cdot {\rm log}_2\hspace{0.01cm} (4/3) = 2 - 0.75 \cdot {\rm log}_2\hspace{0.01cm} (3) \hspace{0.15cm} \underline {= 0.811 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$
Die Entropienäherungen H2, H3, H4, ... liefern hier ebenfalls das Ergebnis 0.811 bit/Symbol.