Aufgaben:Aufgabe 3.10: Transinformation beim BSC: Unterschied zwischen den Versionen
Zeile 16: | Zeile 16: | ||
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
* die Verbundwahrscheinlichkeitsfunktion: | * die Verbundwahrscheinlichkeitsfunktion: | ||
− | :$P_{XY}(X, Y) = \begin{pmatrix} | + | :$$P_{XY}(X, Y) = \begin{pmatrix} |
p_{00} & p_{01}\\ | p_{00} & p_{01}\\ | ||
p_{10} & p_{11} | p_{10} & p_{11} | ||
− | \end{pmatrix} \hspace{0.05cm},$ | + | \end{pmatrix} \hspace{0.05cm},$$ |
* die Transinformation: | * die Transinformation: | ||
:$$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)} | :$$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)} | ||
Zeile 33: | Zeile 33: | ||
*Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Transinformationsberechnung_f.C3.BCr_den_Bin.C3.A4rkanal|Transinformationsberechnung für den Binärkanal]]. | *Bezug genommen wird insbesondere auf die Seite [[Informationstheorie/Anwendung_auf_die_Digitalsignalübertragung#Transinformationsberechnung_f.C3.BCr_den_Bin.C3.A4rkanal|Transinformationsberechnung für den Binärkanal]]. | ||
*In der [[Aufgaben:3.10Z_BSC–Kanalkapazität|Zusatzaufgabe 3.9Z] wird die Kanalkapazität] $C_{\rm BSC }$ des BSC–Modells berechnet. | *In der [[Aufgaben:3.10Z_BSC–Kanalkapazität|Zusatzaufgabe 3.9Z] wird die Kanalkapazität] $C_{\rm BSC }$ des BSC–Modells berechnet. | ||
− | *Diese ergibt sich als die maximale Transinformation $I(X; Y)$ durch Maximierung bezüglich der | + | *Diese ergibt sich als die maximale Transinformation $I(X; Y)$ durch Maximierung bezüglich der Wahrscheinlichkeiten $p_0$ bzw. $p_1 = 1 – p_0$. |
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
Zeile 43: | Zeile 43: | ||
{Berechnen Sie die Verbundwahrscheinlichkeiten $P_{ XY }(X, Y)$ | {Berechnen Sie die Verbundwahrscheinlichkeiten $P_{ XY }(X, Y)$ | ||
|type="{}"} | |type="{}"} | ||
− | $P_{ XY }(0, 0)$ | + | $P_{ XY }(0, 0) \ = \ $ { 0.18 3% } |
− | $P_{ XY }(0, 1)$ | + | $P_{ XY }(0, 1) \ = \ $ { 0.02 3% } |
− | $P_{ XY }(1, 0)$ | + | $P_{ XY }(1, 0) \ = \ $ { 0.08 3% } |
− | $P_{ XY }(1, 1)$ | + | $P_{ XY }(1, 1) \ = \ $ { 0.72 3% } |
− | {Wie lautet die Wahrscheinlichkeitsfunktion $P_Y(Y)$? | + | {Wie lautet die Wahrscheinlichkeitsfunktion $P_Y(Y)$ der Sinke? |
|type="{}"} | |type="{}"} | ||
− | $P_Y(0)$ | + | $P_Y(0)\ = \ $ { 0.26 3% } |
− | $P_Y(1)$ | + | $P_Y(1) \ = \ $ { 0.74 3% } |
− | {Welcher Wert ergibt sich für die Transinformation? | + | {Welcher Wert ergibt sich für die Transinformation $I(X; Y)$? |
|type="{}"} | |type="{}"} | ||
− | $I(X; Y)$ | + | $I(X; Y)\ = \ $ { 0.3578 3% } |
− | {Welcher Wert ergibt sich für die Äquivokation? | + | {Welcher Wert ergibt sich für die Äquivokation $H(X|Y)$? |
|type="{}"} | |type="{}"} | ||
− | $H(X|Y)$ | + | $H(X|Y) \ = \ $ { 0.3642 3% } |
Version vom 7. Juni 2017, 08:31 Uhr
Wir betrachten den Binary Symmetric Channel (BSC). Für die gesamte Aufgabe gelten die Parameterwerte:
- Verfälschungswahrscheinlichkeit: $\epsilon = 0.1$
- Wahrscheinlichkeit für $0$: $p_0 = 0.2$,
- Wahrscheinlichkeit für $1$: $p_1 = 0.8$.
Damit lautet die Wahrscheinlichkeitsfunktion der Quelle: $P_X(X)= (0.2 , 0.8)$ und für die Quellenentropie gilt:
- $$H(X) = p_0 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_0} + p_1\cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_1} = H_{\rm bin}(0.2)={ 0.7219\,{\rm bit}} \hspace{0.05cm}.$$
In der Aufgabe sollen ermittelt werden:
- die Wahrscheinlichkeitsfunktion der Sinke:
- $$P_Y(Y) = (\hspace{0.05cm}P_Y(0)\hspace{0.05cm}, \hspace{0.05cm} P_Y(1)\hspace{0.05cm}) \hspace{0.05cm},$$
- die Verbundwahrscheinlichkeitsfunktion:
- $$P_{XY}(X, Y) = \begin{pmatrix} p_{00} & p_{01}\\ p_{10} & p_{11} \end{pmatrix} \hspace{0.05cm},$$
- die Transinformation:
- $$I(X;Y) = {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.1cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \cdot P_{Y}(Y) }\right ] \hspace{0.05cm},$$
- die Äquivokation:
- $$H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = {\rm E} \hspace{0.02cm} \big [ \hspace{0.02cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)} \big ] \hspace{0.05cm},$$
- die Irrelevanz:
- $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = {\rm E} \hspace{0.02cm} \big [ \hspace{0.02cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X)} \big ] \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Anwendung auf die Digitalsignalübertragung.
- Bezug genommen wird insbesondere auf die Seite Transinformationsberechnung für den Binärkanal.
- In der [[Aufgaben:3.10Z_BSC–Kanalkapazität|Zusatzaufgabe 3.9Z] wird die Kanalkapazität] $C_{\rm BSC }$ des BSC–Modells berechnet.
- Diese ergibt sich als die maximale Transinformation $I(X; Y)$ durch Maximierung bezüglich der Wahrscheinlichkeiten $p_0$ bzw. $p_1 = 1 – p_0$.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
$P_{ XY }(0 , 0) = p_0 . (1 - \varepsilon ) = 0.18 $ , $P_{XY}(0,1) = p_0 . \varepsilon = 0.02$,
$P_{XY}(1,0) = p_1 . \varepsilon = 0.08$ , $P_{ XY }(1 , 1) = p_1 . (1 - \varepsilon ) = 0.72$.
2. Es gilt:
$$P_Y(Y) = \big ( {\rm Pr}( Y = 0)\hspace{0.05cm}, {\rm Pr}( Y = 1) \big ) = \big ( p_0\hspace{0.05cm}, p_1 \big ) \cdot \begin{pmatrix} 1 - \varepsilon & \varepsilon\\ \varepsilon & 1 - \varepsilon \end{pmatrix}$$
$$\Rightarrow \hspace{0.3cm} {\rm Pr}( Y = 0)\hspace{-0.15cm} = \hspace{-0.15cm} p_0 \cdot (1 - \varepsilon) + p_1 \cdot \varepsilon = 0.2 \cdot 0.9 + 0.8 \cdot 0.1 \hspace{0.15cm} \underline {=0.26} \hspace{0.05cm},\\ {\rm Pr}( Y = 1)\hspace{-0.15cm} = \hspace{-0.15cm} p_0 \cdot \varepsilon + p_1 \cdot (1 - \varepsilon) = 0.2 \cdot 0.1 + 0.8 \cdot 0.9 \hspace{0.15cm} \underline {=0.74} \hspace{0.05cm}$$
3. Für die Transinformation gilt gemäß der Definition mit $p_0 = 0.2$ , $p_1 = 0.8$ und $ε = 0.1$
$$I(X;Y) \hspace{-0.2cm} = \hspace{-0.2cm} {\rm E} \hspace{-0.08cm}\left [ \hspace{0.02cm}{\rm log}_2 \hspace{0.08cm} \frac{P_{XY}(X, Y)} {P_{X}(X) \hspace{-0.05cm}\cdot \hspace{-0.05cm} P_{Y}(Y) }\right ] = 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.18}{0.2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.26} + 0.02 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.02}{0.2 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.74} +$$ $$\hspace{-0.2cm} 0.08 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.08}{0.8 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.26} + 0.72 \cdot {\rm log}_2 \hspace{0.08cm} \frac{0.72}{0.8 \hspace{-0.05cm}\cdot \hspace{-0.05cm} 0.74} \hspace{0.15cm} \underline {=0.3578\,{\rm bit}} \hspace{0.05cm}$$
4. Mit der angegebenen Quellenentropie $H(X)$ erhält man für die Äquivokation:
$$H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = H(X) - I(X;Y) = 0.7219 - 0.3578 \hspace{0.15cm} \underline {=0.3642\,{\rm bit}} \hspace{0.05cm}$$. Man könnte auch die allgemeine Definition mit den Rückschlusswahrscheinlichkeiten $P_{X|Y}(⋅)$ anwenden:
$$H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = {\rm E} \hspace{0.02cm} \big [ \hspace{0.05cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}X \mid \hspace{0.03cm} Y} (X \hspace{-0.05cm}\mid \hspace{-0.05cm} Y)} \hspace{0.05cm}\big ] = {\rm E} \hspace{0.02cm} \big [ \hspace{0.05cm} {\rm log}_2 \hspace{0.1cm} \frac{P_Y(Y)}{P_{XY} (X, Y)} \hspace{0.05cm} \big ] \hspace{0.05cm}$$
Im Beispiel erhält man auch nach dieser Berechnungsvorschrift das gleiche Ergebnis $H(X|Y) = 0.3642 bit$ :
$$H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) \hspace{-0.15cm} = \hspace{-0.15cm} 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.26}{0.18} + 0.02 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.74}{0.02} + 0.08 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.26}{0.08} + 0.72 \cdot {\rm log}_2 \hspace{0.1cm} \frac{0.74}{0.72} \hspace{0.05cm}$$
5. Richtig ist der Lösungsvorschlag 2. Bei gestörter Übertragung $(ε > 0)$ ist die Unsicherheit hinsichtlich der Sinke stets größer als die Unsicherheit bezüglich der Quelle. Man erhält hier als Zahlenwert: $$H(Y) = H_{\rm bin}(0.26)={ 0.8268\,{\rm bit}} \hspace{0.05cm}$$ Bei fehlerfreier Übertragung $(ε = 0)$ würde dagegen $P_Y(⋅) = P_X(⋅)$ und $H(Y) = H(X)$ gelten
6. Auch hier ist der zweite Lösungsvorschlag richtig. Wegen
$$I(X;Y) = H(X) - H(X \hspace{-0.1cm}\mid \hspace{-0.1cm} Y) = H(Y) - H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X)$$
ist $H(Y|X)$ um den gleichen Betrag größer als $H(X|Y)$, um den auch $H(Y)$ größer ist als $H(X)$: $$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) = H(Y) -I(X;Y) = 0.8268 - 0.3578 ={ 0.4690\,{\rm bit}} \hspace{0.05cm}$$ Bei direkter Berechnung erhält man das gleiche Ergebnis $H(Y|X) = 0.4690 bit$:
$$H(Y \hspace{-0.1cm}\mid \hspace{-0.1cm} X) \hspace{-0.15cm} = \hspace{-0.15cm} {\rm E} \hspace{0.02cm} \big [ \hspace{0.02cm} {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{\hspace{0.03cm}Y \mid \hspace{0.03cm} X} (Y \hspace{-0.05cm}\mid \hspace{-0.05cm} X)} \big ] =$$ $$=\hspace{-0.15cm} 0.18 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.9} + 0.02 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.08 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.72 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.9} \hspace{0.05cm}$$