Aufgaben:Aufgabe 4.5: Transinformation aus 2D-WDF: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 4.05 I(X; Y) aus fXY(x, y) nach 4.5 Transinformation aus 2D-WDF) |
|||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID2886__Inf_A_4_5_neu.png|right|]] | + | [[Datei:P_ID2886__Inf_A_4_5_neu.png|right|frame|Vorgegebene Verbund-Wahrscheinlichkeitsdichtefunktionen]] |
− | Vorgegeben sind hier die drei unterschiedlichen 2D–Gebiete | + | Vorgegeben sind hier die drei unterschiedlichen 2D–Gebiete $f_{XY}(x, y)$, die in der Aufgabe nach ihren Füllfarben mit |
− | + | * ''rote'' Verbund-WDF | |
− | + | * ''blaue'' Verbund-WDF | |
− | + | * ''grüne'' Verbund-WDF | |
− | bezeichnet werden. In den dargestellten Gebieten gelte jeweils | + | bezeichnet werden. In den dargestellten Gebieten gelte jeweils $f_{XY}(x, y) = C = \rm const.$ |
− | Die Transinformation zwischen den wertkontinuierlichen Zufallsgrößen | + | Die Transinformation zwischen den wertkontinuierlichen Zufallsgrößen $X$ und $Y$ kann unter anderem nach folgender Gleichung berechnet werden: |
− | $$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$ | + | :$$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$ |
Für die hier verwendeten differentiellen Entropien gelten die folgenden Gleichungen: | Für die hier verwendeten differentiellen Entropien gelten die folgenden Gleichungen: | ||
− | $$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_X)} \hspace{-0.55cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} [f_X(x)] \hspace{0.1cm}{\rm d}x | + | :$$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_X)} \hspace{-0.55cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} [f_X(x)] \hspace{0.1cm}{\rm d}x |
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | $$h(Y) = -\hspace{-0.7cm} \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.55cm} f_Y(y) \cdot {\rm log} \hspace{0.1cm} [f_Y(y)] \hspace{0.1cm}{\rm d}y | + | :$$h(Y) = -\hspace{-0.7cm} \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.55cm} f_Y(y) \cdot {\rm log} \hspace{0.1cm} [f_Y(y)] \hspace{0.1cm}{\rm d}y |
\hspace{0.05cm},$$ | \hspace{0.05cm},$$ | ||
− | $$h(XY) = \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{XY}\hspace{-0.08cm})} | + | :$$h(XY) = \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{XY}\hspace{-0.08cm})} |
\hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} [ f_{XY}(x, y) ] | \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} [ f_{XY}(x, y) ] | ||
\hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$ | \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$ | ||
Für die beiden Randwahrscheinlichkeitsdichtefunktionen gilt dabei: | Für die beiden Randwahrscheinlichkeitsdichtefunktionen gilt dabei: | ||
− | $$f_X(x) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{Y}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) | + | :$$f_X(x) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{Y}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) |
\hspace{0.15cm}{\rm d}y\hspace{0.05cm},\hspace{0.8cm} | \hspace{0.15cm}{\rm d}y\hspace{0.05cm},\hspace{0.8cm} | ||
− | f_Y(y) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{X}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) | + | :f_Y(y) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{X}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) |
\hspace{0.15cm}{\rm d}x\hspace{0.05cm}.$$ | \hspace{0.15cm}{\rm d}x\hspace{0.05cm}.$$ | ||
− | '' | + | |
− | + | ||
− | + | ''Hinweise:'' | |
− | + | *Die Aufgabe gehört zum Kapitel [[Informationstheorie/AWGN–Kanalkapazität_bei_wertkontinuierlichem_Eingang|AWGN–Kanalkapazität bei wertkontinuierlichem Eingang]]. | |
− | + | *Gegeben seien zudem folgende differentielle Entropien: | |
− | + | * Ist $X$ dreieckverteilt zwischen $x_{\rm min}$ und $x_{\rm max}$, so gilt: $h(X) = {\rm log} \hspace{0.1cm} [\hspace{0.05cm}\sqrt{ e} \cdot (x_{\rm max} - x_{\rm min})/2\hspace{0.05cm}]\hspace{0.05cm}.$ | |
+ | * Ist $Y$ gleichverteilt zwischen $y_{\rm min}$ und $y_{\rm max}$, so gilt: $h(Y) = {\rm log} \hspace{0.1cm} [\hspace{0.05cm}y_{\rm max} - y_{\rm min}\hspace{0.05cm}]\hspace{0.05cm}.$ | ||
+ | *Alle Ergebnisse sollen in „bit” angegeben werden. Dies erreicht man mit „log” ⇒ „log<sub>2</sub>”. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | |||
+ | |||
+ | |||
===Fragebogen=== | ===Fragebogen=== | ||
Zeile 39: | Zeile 45: | ||
{Wie groß ist die Transinformation der roten Verbund-WDF? | {Wie groß ist die Transinformation der roten Verbund-WDF? | ||
|type="{}"} | |type="{}"} | ||
− | $rote Verbund–WDF: I(X; Y)$ | + | $\text{rote Verbund–WDF:}\hspace{0.5cm} I(X; Y) \ = \ $ { 0. } $\ \rm bit$ |
{Wie groß ist die Transinformation der blauen Verbund-WDF? | {Wie groß ist die Transinformation der blauen Verbund-WDF? | ||
|type="{}"} | |type="{}"} | ||
− | $blaue Verbund–WDF: I(X; Y)$ | + | $\text{blaue Verbund–WDF:}\hspace{0.5cm} I(X; Y) \ = \ $ { 0.721 3% } $\ \rm bit$ |
{Wie groß ist die Transinformation der grünen Verbund-WDF? | {Wie groß ist die Transinformation der grünen Verbund-WDF? | ||
|type="{}"} | |type="{}"} | ||
− | $grüne Verbund–WDF: I(X; Y)$ | + | $\text{grüne Verbund–WDF:}\hspace{0.5cm} I(X; Y) \ = \ $ { 0.721 3% } $\ \rm bit$ |
− | {Welche Voraussetzungen müssen die Zufallsgrößen | + | {Welche Voraussetzungen müssen die Zufallsgrößen $X$ und $Y$ gleichzeitig erfüllen, damit allgemein $I(X;Y) = 1/2 \cdot \log (\rm e)$ gilt: |
|type="[]"} | |type="[]"} | ||
− | + Die Verbund-WDF | + | + Die Verbund-WDF $f_{XY}(x, y)$ ergibt ein Parallelogramm. |
− | + Eine der Zufallsgrößen ( | + | + Eine der Zufallsgrößen ($X$ oder $Y$) ist gleichverteilt. |
− | + Die andere Zufallsgröße ( | + | + Die andere Zufallsgröße ($X$ oder $Y$) ist dreieckverteilt. |
Version vom 12. Juni 2017, 07:15 Uhr
Vorgegeben sind hier die drei unterschiedlichen 2D–Gebiete $f_{XY}(x, y)$, die in der Aufgabe nach ihren Füllfarben mit
- rote Verbund-WDF
- blaue Verbund-WDF
- grüne Verbund-WDF
bezeichnet werden. In den dargestellten Gebieten gelte jeweils $f_{XY}(x, y) = C = \rm const.$
Die Transinformation zwischen den wertkontinuierlichen Zufallsgrößen $X$ und $Y$ kann unter anderem nach folgender Gleichung berechnet werden:
- $$I(X;Y) = h(X) + h(Y) - h(XY)\hspace{0.05cm}.$$
Für die hier verwendeten differentiellen Entropien gelten die folgenden Gleichungen:
- $$h(X) = -\hspace{-0.7cm} \int\limits_{x \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_X)} \hspace{-0.55cm} f_X(x) \cdot {\rm log} \hspace{0.1cm} [f_X(x)] \hspace{0.1cm}{\rm d}x \hspace{0.05cm},$$
- $$h(Y) = -\hspace{-0.7cm} \int\limits_{y \hspace{0.05cm}\in \hspace{0.05cm}{\rm supp}(f_Y)} \hspace{-0.55cm} f_Y(y) \cdot {\rm log} \hspace{0.1cm} [f_Y(y)] \hspace{0.1cm}{\rm d}y \hspace{0.05cm},$$
- $$h(XY) = \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log} \hspace{0.1cm} [ f_{XY}(x, y) ] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\hspace{0.05cm}.$$
Für die beiden Randwahrscheinlichkeitsdichtefunktionen gilt dabei:
- $$f_X(x) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}y \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{Y}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}y\hspace{0.05cm},\hspace{0.8cm} :f_Y(y) = \hspace{-0.5cm} \int\limits_{\hspace{-0.2cm}x \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} (f_{X}\hspace{-0.08cm})} \hspace{-0.4cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}x\hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel AWGN–Kanalkapazität bei wertkontinuierlichem Eingang.
- Gegeben seien zudem folgende differentielle Entropien:
- Ist $X$ dreieckverteilt zwischen $x_{\rm min}$ und $x_{\rm max}$, so gilt: $h(X) = {\rm log} \hspace{0.1cm} [\hspace{0.05cm}\sqrt{ e} \cdot (x_{\rm max} - x_{\rm min})/2\hspace{0.05cm}]\hspace{0.05cm}.$
- Ist $Y$ gleichverteilt zwischen $y_{\rm min}$ und $y_{\rm max}$, so gilt: $h(Y) = {\rm log} \hspace{0.1cm} [\hspace{0.05cm}y_{\rm max} - y_{\rm min}\hspace{0.05cm}]\hspace{0.05cm}.$
- Alle Ergebnisse sollen in „bit” angegeben werden. Dies erreicht man mit „log” ⇒ „log2”.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
a) Bei der rechteckförmigen Verbund–WDF fXY(x, y) gibt es zwischen X und Y keine statistischen Bindungen ⇒ I(X; Y) = 0.
Formal lässt sich dieses Ergebnis mit der folgenden Gleichung nachweisen:
$$I(X;Y) = h(X) \hspace{-0.05cm}+\hspace{-0.05cm} h(Y) \hspace{-0.05cm}- \hspace{-0.05cm}h(XY)\hspace{0.02cm}.$$ Die rote Fläche 2D–WDF fXY(x, y) ist F = 4. Da fXY(x, y) in diesem Gebiet konstant ist und das Volumen unter fXY(x, y) gleich 1 sein muss, gilt C = 1/F = 1/4. Daraus folgt für die differentielle Verbundentropie in „bit”: $$h(XY) \ = \ \hspace{0.1cm}-\hspace{0.2cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \cdot {\rm log}_2 \hspace{0.1cm} [ f_{XY}(x, y) ] \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y\\ = \ {\rm log}_2 \hspace{0.1cm} (4) \cdot \hspace{0.02cm} \int \hspace{-0.9cm} \int\limits_{\hspace{-0.5cm}(x, y) \hspace{0.1cm}\in \hspace{0.1cm}{\rm supp} \hspace{0.03cm}(\hspace{-0.03cm}f_{XY}\hspace{-0.08cm})} \hspace{-0.6cm} f_{XY}(x, y) \hspace{0.15cm}{\rm d}x\hspace{0.15cm}{\rm d}y = 2 \,{\rm bit}\hspace{0.05cm}.$$ Es ist berücksichtigt, das das Doppelintegral gleich 1 ist. Die Pseudo–Einheit „bit” korrespondiert mit dem Logarithmus dualis ⇒ „log2”. Weiterhin gilt:
- Die beiden Randwahrscheinlichkeitsdichtefunktionen fX(x) und fY(y) sind jeweils rechteckförmig ⇒ Gleichverteilung zwischen 0 und 2:
$$h(X) = h(Y) = {\rm log}_2 \hspace{0.1cm} (2) = 1 \,{\rm bit}\hspace{0.05cm}.$$
- Setzt man diese Ergebnisse in die obige Gleichung ein, so erhält man:
$$I(X;Y) = h(X) + h(Y) - h(XY) = 1 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit} = 0 \,{\rm (bit)} \hspace{0.05cm}.$$
b) Auch bei diesem Parallelogramm ergibt sich F = 4, C = 1/4 sowie h(XY) = 2 bit. Die Zufallsgröße Y ist hier wie in der Teilaufgabe (a) zwischen 0 und 2 gleichverteilt. Somit gilt weiter h(Y) = 1 bit.
Dagegen ist X dreieckverteilt zwischen 0 und 4 (mit Maximum bei 2). Es ergibt sich hierfür die gleiche differentielle Entropie h(Y) wie bei einer symmetrischen Dreieckverteilung im Bereich zwischen ±2 (siehe Angabenblatt): $$h(X) = {\rm log}_2 \hspace{0.1cm} [\hspace{0.05cm}2 \cdot \sqrt{ e} \hspace{0.05cm}] = 1.721 \,{\rm bit}$$ $$\Rightarrow \hspace{0.3cm} I(X;Y) = 1.721 \,{\rm bit} + 1 \,{\rm bit} - 2 \,{\rm bit}\hspace{0.05cm}\underline{ = 0.721 \,{\rm (bit)}} \hspace{0.05cm}.$$
c) Bei den grünen Gegebenheiten berechnet sich die Verbundentropie wie folgt: $$F = A \cdot B \hspace{0.3cm} \Rightarrow \hspace{0.3cm} C = \frac{1}{A \cdot B} \hspace{0.05cm}$$ $$\Rightarrow \hspace{0.3cm} h(XY) = {\rm log}_2 \hspace{0.1cm} (A \cdot B) \hspace{0.05cm}.$$ Die Zufallsgröße Y ist nun zwischen 0 und A gleichverteilt und die Zufallsgröße X ist zwischen 0 und B dreieckverteilt: $$h(X) \ = \ {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ e}) \hspace{0.05cm},$$ $$ h(Y) \ = \ {\rm log}_2 \hspace{0.1cm} (A)\hspace{0.05cm}.$$
Damit ergibt sich für die Transinformation zwischen X und Y:
$$I(X;Y) \ = {\rm log}_2 \hspace{0.1cm} (B \cdot \sqrt{ {\rm e}}) + {\rm log}_2 \hspace{0.1cm} (A) - {\rm log}_2 \hspace{0.1cm} (A \cdot B)$$
$$ = \ {\rm log}_2 \hspace{0.1cm} \frac{B \cdot \sqrt{ {\rm e}} \cdot A}{A \cdot B} = {\rm log}_2 \hspace{0.1cm} (\sqrt{ {\rm e}})\hspace{0.15cm}\underline{= 0.721\,{\rm bit}}
\hspace{0.05cm}.$$
I(X; Y) ist somit unabhängig von den WDF–Parametern A und B.
d) Alle genannten Voraussetzungen sind erforderlich. Allerdings sind nicht für jedes Parallelogramm die Forderungen 2 und 3 zu erfüllen. Nebenstehende Grafik zeigt zwei solche Konstellationen, wobei nun die Zufallsgröße X jeweils gleichverteilt ist zwischen 0 und 1.
- Bei der oberen Grafik liegen die beiden eingezeichneten Punkte auf einer Höhe ⇒ fY(y) ist dreieckverteilt ⇒ I(X; Y) = 0.721 bit.
- Die untere Verbund–WDF besitzt eine andere Transinformation, da die beiden Punkte nicht auf gleicher Höhe liegen ⇒ die WDF fY(y) hat hier eine Trapezform. Gefühlsmäßig tippe ich auf I(X; Y) < 0.721 bit, da sich das 2D–Gebiet eher einem Rechteck annähert. Wenn Sie noch Lust haben, so überprüfen Sie das bitte.