Aufgaben:Aufgabe 1.2: Verzerrungen? Oder keine Verzerrung?: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID949__Mod_A_1_2.png|right|frame|Betrachtete Sinkensignale für das gegebene Eingangssignal <i>q</i>(<i>t</i>)]]
 
[[Datei:P_ID949__Mod_A_1_2.png|right|frame|Betrachtete Sinkensignale für das gegebene Eingangssignal <i>q</i>(<i>t</i>)]]
Die drei Nachrichtensysteme $S_1$, $S_2$ und $S_3$ werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal
+
Die drei Nachrichtensysteme $S_1$, $S_2$ und $S_3$ werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal mit der Signalfrequenz $f_{\rm N} = 1$ kHz angelegt:
$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$
+
:$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$
angelegt. Die Signalfrequenz ist stets $f_N = 1 kHz$.
 
  
 
Gemessen werden die Signale am Ausgang der drei Systeme, die in der Grafik dargestellt sind:
 
Gemessen werden die Signale am Ausgang der drei Systeme, die in der Grafik dargestellt sind:
$$v_1(t) =  2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm}$$
+
:$$v_1(t) =  2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
$$v_2(t) =  1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t +  1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
+
:$$v_2(t) =  1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t +  1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
$$v_3(t)=  1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
+
:$$v_3(t)=  1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$
  
 
Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.
 
Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.
  
  
'''Hinweis:'''Diese Aufgabe bezieht sich auf das [http://www.lntwww.de/Modulationsverfahren/Qualit%C3%A4tskriterien Kapitel 1.2] des vorliegenden Buches und das [http://www.lntwww.de/Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen Kapitel 2.2] von „Lineare zeitinvariante Systeme”. Bei nichtlinearen Verzerrungen ist das Sinken–$\text{SNR}$ $ρ_υ = 1/K^{ 2 }$, wobei der Klirrfaktor $K$ das Verhältnis der Effektivwerte aller Oberwellen und Grundfrequenz angibt.
+
''Hinweise:''  
 +
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
 +
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Qualitätskriterien#Signal.E2.80.93zu.E2.80.93St.C3.B6r.E2.80.93Leistungsverh.C3.A4ltnis|Signal-zu-Stör-Leistungsverhältnis]] und auf das Kapitel [[Lineare_zeitinvariante_Systeme/Nichtlineare_Verzerrungen|Nichtlineare Verzerrungen]] im Buch &bdquo;Lineare zeitinvariante Systeme&rdquo;.
 +
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
  
  
Zeile 22: Zeile 24:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen sind nach dieser Messung über das System '$S_1$ möglich?
+
{Welche Aussagen sind nach dieser Messung über das System $S_1$ möglich?
 
|type="[]"}
 
|type="[]"}
 
- $S_1$ könnte ein ideales System sein.
 
- $S_1$ könnte ein ideales System sein.
Zeile 30: Zeile 32:
  
  
{Schreiben Sie das zweite Signal in der Form $υ_2(t) = α · q(t τ)$ und bestimmen Sie die Kenngrößen.
+
{Schreiben Sie das zweite Signal in der Form $v_2(t) = α · q(t - τ)$ und bestimmen Sie dessen Kenngrößen.
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.707 3% }
+
$\alpha \ = \ $ { 0.707 3% }
$τ$= { 125 3% } $μs$
+
\ = \ $ { 125 3% } $\ \rm μs$
  
{Welche Aussagen sind nach dieser Messung über das System '$S_2$ möglich?
+
{Welche Aussagen sind nach dieser Messung über das System $S_2$ möglich?
 
|type="[]"}
 
|type="[]"}
 
- $S_2$ könnte ein ideales System sein.
 
- $S_2$ könnte ein ideales System sein.
Zeile 47: Zeile 49:
 
+ Es handelt sich um nichtlineare Verzerrungen.
 
+ Es handelt sich um nichtlineare Verzerrungen.
  
{Berechnen Sie das Sinken–$\text{SNR}$ von System $S_3$.
+
{Berechnen Sie das Sinken–SNR $ρ_{v3}$von System $S_3$.
 
|type="{}"}
 
|type="{}"}
$ρ_{υ3}$= { 25 3% }
+
$ρ_{v3} \ = \ $ { 25 3% }
 
 
 
 
 
 
 
 
  
  

Version vom 19. Juni 2017, 15:10 Uhr

Betrachtete Sinkensignale für das gegebene Eingangssignal q(t)

Die drei Nachrichtensysteme $S_1$, $S_2$ und $S_3$ werden hinsichtlich der durch sie verursachten Verzerrungen analysiert. Zu diesem Zwecke wird an den Eingang eines jeden Systems das cosinusförmige Testsignal mit der Signalfrequenz $f_{\rm N} = 1$ kHz angelegt:

$$q(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )$$

Gemessen werden die Signale am Ausgang der drei Systeme, die in der Grafik dargestellt sind:

$$v_1(t) = 2 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t )\hspace{0.05cm},$$
$$v_2(t) = 1 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t + 1 \;{\rm V} \cdot \sin(2 \pi f_{\rm N} t) \hspace{0.05cm},$$
$$v_3(t)= 1.5 \;{\rm V} \cdot \cos(2 \pi f_{\rm N} t) - 0.3 \;{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$

Anzumerken ist, dass hier die in der Praxis stets vorhandenen Rauschanteile als vernachlässigbar klein angenommen werden.


Hinweise:


Fragebogen

1

Welche Aussagen sind nach dieser Messung über das System $S_1$ möglich?

$S_1$ könnte ein ideales System sein.
$S_1$ könnte ein verzerrungsfreies System sein.
$S_1$ könnte ein linear verzerrendes System sein.
$S_1$ könnte ein nichtlinear verzerrendes System sein.

2

Schreiben Sie das zweite Signal in der Form $v_2(t) = α · q(t - τ)$ und bestimmen Sie dessen Kenngrößen.

$\alpha \ = \ $

$τ \ = \ $

$\ \rm μs$

3

Welche Aussagen sind nach dieser Messung über das System $S_2$ möglich?

$S_2$ könnte ein ideales System sein.
$S_2$ könnte ein verzerrungsfreies System sein.
$S_2$ könnte ein linear verzerrendes System sein.
$S_2$ könnte ein nichtlinear verzerrendes System sein.

4

Von welcher Art sind die Verzerrungen beim System $S_3$?

Es handelt sich um lineare Verzerrungen.
Es handelt sich um nichtlineare Verzerrungen.

5

Berechnen Sie das Sinken–SNR $ρ_{v3}$von System $S_3$.

$ρ_{v3} \ = \ $


Musterlösung

1. $S_1$ könnte durchaus ein ideales System sein, nämlich dann, wenn für alle Frequenzen $f_N$ die Bedingung $υ(t) = q(t)$ erfüllt wäre. Auch die zweite Alternative ist möglich, da das ideale System ein Sonderfall der verzerrungsfreien Systeme darstellt. Würde bei einer anderen Frequenz $f = f_N$ die Bedingung $υ(t) = q(t)$ allerdings nicht erfüllt, so würde ein linear verzerrendes System vorliegen, dessen Frequenzgang bei der Frequenz $f_N$ zufällig gleich 1 wäre. Dagegen kann ein nichtlinear verzerrendes System aufgrund fehlender Oberwellen ausgeschlossen werden. Richtig sind somit die Lösungsvorschläge 1, 2 und 3.


2.Entsprechend den Ausführungen im Kapitel 2.3 von „Signaldarstellung” gelten folgende Gleichungen: $$A \cdot \cos(\omega_{\rm N} t ) + B \cdot \sin(\omega_{\rm N} t ) = C \cdot \cos(\omega_{\rm N} t - \varphi)$$ $$\Rightarrow \hspace{0.3cm} C = \sqrt{A^2 + B^2},\hspace{0.5cm}\varphi ={\rm arctan}\hspace{0.1cm}\frac {A}{B}\hspace{0.05cm}$$ Angewandt auf das vorliegende Beispiel erhält man $$C = \sqrt{(1 \,{\rm V})^2 + (1 \,{\rm V})^2}= 1.414\,{\rm V}\hspace{0.05cm}$$ Der Dämpfungsfaktor des Systems hat somit den Wert $α = 1.414/2 = 0.707$. Für die Phase gilt: $$ \varphi ={\rm arctan}\hspace{0.1cm}\frac {1 \,{\rm V}}{1 \,{\rm V}} = 45^{\circ} = \frac {\pi}{4}\hspace{0.05cm}.$$ Die Umformung $cos(ω_N · t – φ) = cos(ω_N · (t – τ))$ erlaubt Aussagen über die Laufzeit: $$\tau =\frac {\varphi}{2\pi f_{\rm N}} = \frac {\pi /4}{2\pi f_{\rm N}} = \frac {1}{8 \cdot 1 \,{\rm kHz}} \hspace{0.15cm}\underline {= 125\,{\rm \mu s}}\hspace{0.05cm}.$$


3.Das System S2 ist nach den Ausführungen zur Teilaufgabe a) weder ideal noch nichtlinear verzerrend. Dagegen sind die Alternativen 2 und 3 möglich, je nachdem, ob die berechneten Werte von $α$ und $τ$ für alle Frequenzen erhalten bleiben oder nicht. Mit einer einzigen Messung bei nur einer Frequenz kann diese Frage nicht geklärt werden.


4.Das Signal $υ_3(t)$ beinhaltet eine Oberwelle dritter Ordnung. Deshalb ist die Verzerrung nichtlinear.


5.Mit den Amplituden $A_1 = 1.5 V$ und $A_3 = –0.3 V$ erhält man für den Klirrfaktor: $$ K_3 =\frac {|A_3|}{|A_1|} = 0.2\hspace{0.05cm}.$$ Deshalb beträgt das Sinken–$\text{SNR}$ entsprechend der angegebenen Gleichung $ρ_{υ3} = 1/K_3^{ 2 } = 25$. Zum gleichen Ergebnis kommt man nach der allgemeinen Berechnung. Aus den Amplituden von Quellensignal und Grundwelle des Sinkensignals erhält man für den frequenzunabhängigen Dämpfungsfaktor: $$ \alpha =\frac {1.5 \,{\rm V}}{2 \,{\rm V}} = 0.75\hspace{0.05cm}.$$ Das von den nichtlinearen Verzerrungen herrührende Fehlersignal lautet deshalb: $$\varepsilon_3(t) = v_3(t) - \alpha \cdot q(t) = - 0.3 \,{\rm V} \cdot \cos(6 \pi f_{\rm N} t)\hspace{0.05cm}.$$ Damit ergibt sich die Verzerrungsleistung: $$P_{\varepsilon 3}= \frac{1}{2} \cdot (0.3 \,{\rm V})^2 = 0.045 \,{\rm V}^2\hspace{0.05cm}.$$ Mit der Leistung des Quellensignals, $$P_{q}= \frac{1}{2} \cdot (2\,{\rm V})^2 = 2 \,{\rm V}^2\hspace{0.05cm},$$ erhält man unter Berücksichtigung des Dämpfungsfaktors: $$\rho_{v3} = \frac{\alpha^2 \cdot P_{q}}{P_{\varepsilon 3}} = \frac{0.75^2 \cdot 2 {\rm V}^2}{0.045 } \hspace{0.15cm}\underline {= 25}\hspace{0.05cm}.$$