Aufgaben:Aufgabe 2.13: Quadratur-Amplitudenmodulation (QAM): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 10: Zeile 10:
 
:$$z_1(t)  =  \cos(\omega_{\rm T} \cdot t),$$
 
:$$z_1(t)  =  \cos(\omega_{\rm T} \cdot t),$$
 
:$$ z_2(t)  =  \sin(\omega_{\rm T} \cdot t),$$
 
:$$ z_2(t)  =  \sin(\omega_{\rm T} \cdot t),$$
:$$ z_{1,{\rm E}}(t) =  2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
+
:$$ z_{1,\hspace{0.05cm}{\rm E}}(t) =  2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
:$$ z_{2,{\rm E}}(t)  =  2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$
+
:$$ z_{2,\hspace{0.05cm}{\rm E}}(t)  =  2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$
Die beiden Tiefpässe mit den Eingangssignalen $b_1(t)$ und $b_2(t)$ entfernen jeweils alle Frequenzanteile $|f| > f_{\rm T}$.
+
Die Tiefpässe mit den Eingangssignalen $b_1(t)$ und $b_2(t)$ entfernen jeweils alle Frequenzanteile $|f| > f_{\rm T}$.
  
  
Zeile 19: Zeile 19:
 
*Bezug genommen wird insbesondere auf die  Seite [[Modulationsverfahren/Weitere_AM–Varianten#Quadratur.E2.80.93Amplitudenmodulation_.28QAM.29|Quadratur-Amplitudenmodulation (QAM)]].
 
*Bezug genommen wird insbesondere auf die  Seite [[Modulationsverfahren/Weitere_AM–Varianten#Quadratur.E2.80.93Amplitudenmodulation_.28QAM.29|Quadratur-Amplitudenmodulation (QAM)]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
*Anzumerken ist, dass hier die Trägersignale $z_2(t)$ und $z_{2,{\rm E}}(t)$ mit positivem Vorzeichen angesetzt wurden. Oft – so auch im Theorieteil – werden diese Trägersignale als „Minus–Sinus” angegeben.
+
*Anzumerken ist, dass hier die Trägersignale $z_2(t)$ und $z_{2,\hspace{0.05cm}{\rm E}}(t)$ mit positivem Vorzeichen angesetzt wurden. Oft – so auch im Theorieteil – werden diese Trägersignale als „Minus–Sinus” angegeben.
 
*Gegeben sind folgende trigonometrischen Umformungen:
 
*Gegeben sind folgende trigonometrischen Umformungen:
 
:$$ \cos(\alpha) \cdot \cos(\beta)  = 1/2 \cdot \left[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \right],$$
 
:$$ \cos(\alpha) \cdot \cos(\beta)  = 1/2 \cdot \left[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \right],$$

Version vom 4. Juli 2017, 11:32 Uhr

Betrachtetes Modell der Quadratur–Amplitudenmodulation

Die durch die Grafik erklärte Quadratur–Amplitudenmodulation (QAM) erlaubt unter gewissen Randbedingungen, die in dieser Aufgabe herausgefunden werden sollen, die gleichzeitige Übertragung von zwei Quellensignalen $q_1(t)$ und $q_2(t)$ über den gleichen Kanal. In dieser Aufgabe gelte mit $A_1 = A_2 = 2\ \rm V$:

$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$

Die vier in der Grafik eingezeichneten Trägersignale lauten mit $ω_{\rm T} = 2π · 25\ \rm kHz$:

$$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$
$$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$
$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$

Die Tiefpässe mit den Eingangssignalen $b_1(t)$ und $b_2(t)$ entfernen jeweils alle Frequenzanteile $|f| > f_{\rm T}$.


Hinweise:

  • Die Aufgabe gehört zum Kapitel WeitereAM–Variantenn.
  • Bezug genommen wird insbesondere auf die Seite Quadratur-Amplitudenmodulation (QAM).
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Anzumerken ist, dass hier die Trägersignale $z_2(t)$ und $z_{2,\hspace{0.05cm}{\rm E}}(t)$ mit positivem Vorzeichen angesetzt wurden. Oft – so auch im Theorieteil – werden diese Trägersignale als „Minus–Sinus” angegeben.
  • Gegeben sind folgende trigonometrischen Umformungen:
$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \left[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \right],$$
$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \left[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \right],$$
$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \left[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \right] \hspace{0.05cm}.$$

Fragebogen

1

Berechnen Sie das Sendesignal $s(t)$ für den Fall $f_1 ≠ f_2$. Welche der folgenden Aussagen treffen zu?

$s(t)$ besteht aus zwei Cosinus– und zwei Sinusschwingungen.
$s(t)$ setzt sich aus vier Cosinusschwingungen zusammen.
$s(t)$ setzt sich aus vier Sinusschwingungen zusammen.

2

Wie lautet $s(t)$ für $f_1 = f_2 = 5 kHz$. Welcher Signalwert tritt bei $t = 50 μs$ auf?

$s(t = 50 μs)$ =

$V$

3

Berechnen Sie für $f_1 = f_2$ und $Δϕ_T = 0$ die Sinkensignale $υ_1(t)$ und $υ_2(t)$. Welche der folgenden Aussagen treffen zu?

Es gilt $υ_1(t) = q_1(t)$ und $υ_2(t) = q_2(t)$.
Es ergeben sich lineare Verzerrungen.
Es ergeben sich nichtlineare Verzerrungen.

4

Berechnen Sie für $f_1 = f_2$ und $Δϕ_T = 30°$ die Sinkensignale $υ_1(t)$ und $υ_2(t)$. Welche der folgenden Aussagen treffen zu?

Es gilt $υ_1(t) = q_1(t)$ und $υ_2(t) = q_2(t)$.
Es ergeben sich lineare Verzerrungen.
Es ergeben sich nichtlineare Verzerrungen.

5

Welche der folgenden Aussagen treffen für $f_1 ≠ f_2$ und $Δϕ_T ≠ 0$ zu?

Es gilt $υ_1(t) = q_1(t)$ und $υ_2(t) = q_2(t)$.
Es ergeben sich lineare Verzerrungen.
Es ergeben sich nichtlineare Verzerrungen.


Musterlösung

1.Mit den angegebenen trigonometrischen Umformungen erhält man: $$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) =$$ $$ = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) +$$ $$ + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$ Richtig ist demnach der zweite Lösungsvorschlag.


2.Mit $A_1 = A_2 = 2 V$ und $f_1 = f_2 = 5 kHz$ überlagern sich zwei dieser Cosinusschwingungen konstruktiv und zwei weitere heben sich vollständig auf. Es ergibt sich somit das folgende einfache Ergebnis: $$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm \mu s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$ 3. Richtig ist der erste Lösungsvorschlag. Bei phasensynchroner Demodulation ($Δϕ_T = 0$) erhält man für die Signale vor den beiden Tiefpässen mit $r(t) = s(t)$ entsprechend Teilaufgabe b): $$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$ $$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$ Nach Eliminierung der jeweiligen 45 kHz–Anteile ergibt sich somit $υ_1(t) = q_1(t)$ und $υ_2(t) = q_2(t)$.


4.Analog zur Teilaufgabe c) gilt nun: $$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=$$ $$ = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$ $$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=$$ $$ = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$ Die Sinkensignale $υ_1(t)$ und $υ_2(t)$ weisen bei dieser Konstellation gegenüber $q_1(t)$ und $q_2(t)$ Laufzeiten und damit Phasenverzerrungen auf. Diese gehören zur Klasse der linearen Verzerrungen.

5.Allgemein gilt für das Empfangssignal: $$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$ Die Multiplikation mit den empfängerseitigen Trägersignalen $z_{1,E}(t)$ und $z_{2,E}(t)$ und die abschließende Bandbegrenzung führt zu den Sinkensignalen $$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$ $$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$ Daraus ist zu ersehen: Bei einem Phasenversatz von $Δ_ϕT = 30°$ beinhaltet das Sinkensignal $υ_1(t)$ nicht nur das um $cos(30°) = 0.866$ gedämpfte Signal $q_1(t)$, sondern auch die in $q_2(t)$ enthaltene Frequenz $f_2$ (diese ist mit dem Faktor $sin(30°) = 0.5$ gewichtet). Es liegen somit nichtlineare Verzerrungen vor.