Aufgaben:Aufgabe 3.1Z: Einfluss der Nachrichtenphase bei PM: Unterschied zwischen den Versionen
Zeile 52: | Zeile 52: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' Man erkennt aus der Skizze, dass der dargestellte Signalausschnitt der Dauer $200 \ \rm μs$ genau der Periodendauer des sinusförmigen Quellensignals entsprechen muss. Daraus folgt $f_{\rm N}\hspace{0.15cm}\underline{ = 5 \ \rm kHz}$. |
+ | *Zu den Zeitpunkten $t = 0$, $t = 100 \ \rm μs$ und $t = 200 \ \rm μs$ sind die Signale $z(t)$ und $s(t)$ phasensynchron. | ||
+ | *In der ersten Halbwelle von $q(t)$ kommen die Nulldurchgänge von $s(t)$ etwas früher als die des Trägersignals $z(t)$ ⇒ positive Phase. | ||
+ | *Dagegen ist im Bereich von $t = 100 \ \rm μs$ bis $t = 200 \ \rm μs$ die Phase $ϕ(t) < 0$. | ||
− | '''2 | + | '''(2)''' Es gilt $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm kHz}$, da im dargestellten $z(t)$–Signalausschnitt der Dauer $200 \ \rm μs$ genau $10$ Perioden abgezählt werden können. |
− | |||
+ | '''(3)''' Die maximale relative Phasenabweichung beträgt $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{ ≈ 0.318}$. | ||
− | |||
− | ''' | + | '''(4)''' Da die Periodendauer des Trägers $T_0 = 20 \ \rm μs$ ist, erhält man $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm μs}$. |
− | '''6 | + | |
− | $$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos(2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) ) = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$ | + | '''(5)''' Die maximale Phasenabweichung (Verschiebung der Nulldurchgänge) ist bei $s_2(t)$ genau so groß wie bei $s_1(t)$. Daraus kann auf $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$ geschlossen werden. |
− | Dies entspricht der Phasenlage $ϕ_{N2} = | + | |
+ | |||
+ | '''(6)''' Das Signal $s_2(t)$ ist gegenüber $s_1(t)$ um $25 \ \rm μs$ nach rechts verschoben. Deshalb muss auch für die Quellensignale gelten: | ||
+ | :$$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos(2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) ) = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$ | ||
+ | Dies entspricht der Phasenlage $ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 5. Juli 2017, 10:35 Uhr
Wir betrachten die Phasenmodulation verschiedener Schwingungen
- $$ q(t) = \cos(\omega_{\rm N} \cdot t + \phi_{\rm N})\hspace{0.05cm}.$$
Das Quellensignal ist hierbei normiert (Amplitude $1$) dargestellt, so dass das phasenmodulierte Signal mit dem Modulationsindex (bzw. Phasenhub) $η$ wie folgt beschrieben werden kann:
- $$s(t) = A_{\rm T} \cdot \cos \left(\omega_{\rm T} \cdot t + \eta \cdot q(t) \right)\hspace{0.05cm}.$$
- Das in der oberen Grafik dargestellte Signal $s_1(t)$ ist durch die Parameterwerte $ϕ_{\rm N} = -90^\circ$ und $η_1 = 2$ charakterisiert. Die Frequenz $f_{\rm N}$ dieses sinusförmigen Quellensignals soll ebenso wie die Trägerfrequenz $f_{\rm T}$ aus dem dargestellten Signalausschnitt der Dauer $200 \ \rm μs$ ermittelt werden.
- Das Signal $s_2(t)$ unterscheidet sich von $s_1(t)$ möglicherweise durch eine andere Nachrichtenphase $ϕ_{\rm N}$ und einen anderen Modulationsindex $η$. Alle anderen Systemparameter sind gegenüber $s_1(t)$ unverändert.
Hinweise:
- Die Aufgabe gehört zum Kapitel Phasenmodulation.
- Bezug genommen wird insbesondere auf die Seite Signalverläufe bei Phasenmodulation.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Zu den Zeitpunkten $t = 0$, $t = 100 \ \rm μs$ und $t = 200 \ \rm μs$ sind die Signale $z(t)$ und $s(t)$ phasensynchron.
- In der ersten Halbwelle von $q(t)$ kommen die Nulldurchgänge von $s(t)$ etwas früher als die des Trägersignals $z(t)$ ⇒ positive Phase.
- Dagegen ist im Bereich von $t = 100 \ \rm μs$ bis $t = 200 \ \rm μs$ die Phase $ϕ(t) < 0$.
(2) Es gilt $f_{\rm T}\hspace{0.15cm}\underline{ = 50 \ \rm kHz}$, da im dargestellten $z(t)$–Signalausschnitt der Dauer $200 \ \rm μs$ genau $10$ Perioden abgezählt werden können.
(3) Die maximale relative Phasenabweichung beträgt $ϕ_{\rm max} = η_1/(2π)\hspace{0.15cm}\underline{ ≈ 0.318}$.
(4) Da die Periodendauer des Trägers $T_0 = 20 \ \rm μs$ ist, erhält man $Δt_{\rm max} = ϕ_{\rm max} ·T_0\hspace{0.15cm}\underline{ ≈ 6.37 \ \rm μs}$.
(5) Die maximale Phasenabweichung (Verschiebung der Nulldurchgänge) ist bei $s_2(t)$ genau so groß wie bei $s_1(t)$. Daraus kann auf $η_2 = η_1\hspace{0.15cm}\underline{ = 2}$ geschlossen werden.
(6) Das Signal $s_2(t)$ ist gegenüber $s_1(t)$ um $25 \ \rm μs$ nach rechts verschoben. Deshalb muss auch für die Quellensignale gelten:
- $$ q_2(t) = q_1(t - 25\,{\rm \mu s}) = \cos(2 \pi f_{\rm N} (t - 25\,{\rm \mu s}) ) = \cos (\omega_{\rm N} \cdot t - 0.75 \cdot \pi)\hspace{0.05cm}.$$
Dies entspricht der Phasenlage $ϕ_{\rm N2}\hspace{0.15cm}\underline{ = -135^\circ}$.