Aufgaben:Aufgabe 3.7: Winkelmodulation einer harmonischen Schwingung: Unterschied zwischen den Versionen
Zeile 40: | Zeile 40: | ||
{Wie groß ist $K$ zu wählen, damit die Amplitude von $v_{\rm FM}(t)$ gleich $1.5 \ \rm V$ ist? | {Wie groß ist $K$ zu wählen, damit die Amplitude von $v_{\rm FM}(t)$ gleich $1.5 \ \rm V$ ist? | ||
|type="{}"} | |type="{}"} | ||
− | $K\ = \ $ { 6.28 3% } $\rm \cdot 10^4 \ 1/s$ | + | $K\ = \ $ { 6.28 3% } $\ \rm \cdot 10^4 \ 1/s$ |
{Welche der folgenden Aussagen treffen für das FM–modulierte Signal zu? | {Welche der folgenden Aussagen treffen für das FM–modulierte Signal zu? | ||
Zeile 53: | Zeile 53: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' Richtig sind die <u>Lösungsvorschläge 1, 2 und 4</u>: |
+ | *Aus der Gleichung für $r(t)$ kann lediglich abgelesen werden, dass es sich um eine Winkelmodulation handelt, nicht jedoch, ob eine Phasenmodulation (PM) oder eine Frequenzmodulation (FM) vorliegt. | ||
+ | *Aufgrund der Gleichung steht fest, dass die Nachrichtenfrequenz $f_{\rm N} = 10 \ \rm kHz$ beträgt. | ||
+ | *Die Phase $ϕ_{\rm N} = 0$ des Quellensignals würde dagegen nur zutreffen, wenn eine Phasenmodulation vorläge. | ||
− | '''2 | + | '''(2)''' Mit der Modulatorkonstanten $K_{\rm PM} = 2 \ \rm V^{–1}$ erhält man hierfür: |
− | $$v_{\rm PM}(t) = \frac{1}{K_{\rm PM}} \cdot \phi_r(t) = \frac{3}{2\,{\rm V}^{-1}} \cdot \cos(2 \pi \cdot 10\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$ | + | :$$v_{\rm PM}(t) = \frac{1}{K_{\rm PM}} \cdot \phi_r(t) = \frac{3}{2\,{\rm V}^{-1}} \cdot \cos(2 \pi \cdot 10\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$ |
Für den Zeitpunkt $t = 0$ gilt deshalb: | Für den Zeitpunkt $t = 0$ gilt deshalb: | ||
− | $$v_{\rm PM}(t = 0) = {A_{\rm N}} \hspace{0.15cm}\underline {= 1.5\,{\rm V}}\hspace{0.05cm}.$$ | + | :$$v_{\rm PM}(t = 0) = {A_{\rm N}} \hspace{0.15cm}\underline {= 1.5\,{\rm V}}\hspace{0.05cm}.$$ |
− | '''3 | + | '''(3)''' Für das Ausgangssignal $v_{\rm FM}(t)$ des FM–Demodulators – bestehend aus PM–Demodulator und Differenzierer – kann man schreiben: |
− | $$v_{\rm FM}(t) = \frac{{\rm d}v_{\rm PM}(t)}{{\rm d}t} \cdot K = \frac{K \cdot A_{\rm N}}{2 \pi \cdot f_{\rm N}} \cdot (- \sin(2 \pi \cdot {f_{\rm N}} \cdot t)) | + | :$$v_{\rm FM}(t) = \frac{{\rm d}v_{\rm PM}(t)}{{\rm d}t} \cdot K = \frac{K \cdot A_{\rm N}}{2 \pi \cdot f_{\rm N}} \cdot (- \sin(2 \pi \cdot {f_{\rm N}} \cdot t))= \frac{K \cdot A_{\rm N}}{2 \pi \cdot f_{\rm N}} \cdot \cos(2 \pi \cdot {f_{\rm N}} \cdot t + 90^\circ)\hspace{0.05cm}.$$ |
− | + | Die Nachrichtenphase ist somit $ϕ_{\rm N} \hspace{0.15cm}\underline {= 90^\circ}$. | |
− | Die Nachrichtenphase ist somit $ | ||
− | '''4 | + | '''(4)''' In diesem Fall muss gelten: $ K ={2 \pi \cdot f_{\rm N}} \hspace{0.15cm}\underline { = 6.28 \cdot 10^{4} \,\,{1}/{ s}} \hspace{0.05cm}.$ |
− | |||
− | |||
− | |||
− | |||
− | Bei halber Nachrichtenfrequenz verdoppelt sich der Phasenhub $η$, während der Frequenzhub $ | + | '''(5)''' Richtig sind die <u>Lösungsvorschläge 1, 2, 3 und 5</u>: |
− | $$\eta = \frac{K_{\rm PM} \cdot A_{\rm N}}{ f_{\rm N}} = 6 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} = \eta \cdot f_{\rm N} = 6 \cdot 5\,{\rm kHz} = 30\,{\rm kHz}\hspace{0.05cm}.$$ | + | *Der Phasenhub ist identisch mit dem Modulationsindex, der aus der angegebenen Gleichung abgelesen werden kann: |
+ | :$$\phi_{\rm max} = \eta = 3 = \frac{\Delta f_{\rm A}}{ f_{\rm N}} \hspace{0.05cm}.$$ | ||
+ | *Damit erhält man den Frequenzhub $Δf_{\rm A} = 3 · f_{\rm N} = 30 \ \rm kHz$. | ||
+ | *Mit der Trägerfrequenz $f_{\rm T} = 1 \ \rm MHz$ kann somit die Augenblicksfrequenz $f_{\rm T}(t)$ nur Werte zwischen $1±0.03 MHz$ annehmen. | ||
+ | |||
+ | |||
+ | Es gilt also auch folgende Aussage: | ||
+ | Bei halber Nachrichtenfrequenz verdoppelt sich der Phasenhub $η$, während der Frequenzhub $Δf_{\rm A}$ davon nicht beeinflusst wird: | ||
+ | :$$\eta = \frac{K_{\rm PM} \cdot A_{\rm N}}{ f_{\rm N}} = 6 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} = \eta \cdot f_{\rm N} = 6 \cdot 5\,{\rm kHz} = 30\,{\rm kHz}\hspace{0.05cm}.$$ | ||
Version vom 7. Juli 2017, 16:10 Uhr
Das an einem Empfänger ankommende Signal lautet:
- $$ r(t) = 3\,{\rm V} \cdot \cos\left[2 \pi \cdot 1\,{\rm MHz} \cdot t + 3 \cdot \cos(2 \pi \cdot 10\,{\rm kHz} \cdot t)\right]\hspace{0.05cm}.$$
Bei $r(t)$ handelt es sich um ein winkelmoduliertes Signal, das bei der Übertragung weder verzerrt noch durch Rauschen beaufschlagt wurde. Die Signale $v_{\rm PM}(t)$ und $v_{\rm FM}(t)$ ergeben sich nach idealer Demodulation mittels
- Phasendemodulator, gegeben durch die Gleichung
- $$ v_{\rm PM}(t) = \frac{1}{K_{\rm PM}} \cdot \phi_r(t) \hspace{0.05cm},\hspace{0.3cm} {K_{\rm PM}} = 2\,{\rm V}^{-1}\hspace{0.05cm},$$
- Frequenzdemodulator, bestehend aus PM–Demodulator, Differenzierer und einer Konstanten $K$. Damit alle Signale gleiche Einheiten besitzen, ist diese Konstante $K$ dimensionsbehaftet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Frequenzmodulation.
- Bezug genommen wird aber auch auf das Kapitel Phasenmodulation und insbesondere auf den Abschnitt Signalverl.äufe bei Frequenzmodulation.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Aus der Gleichung für $r(t)$ kann lediglich abgelesen werden, dass es sich um eine Winkelmodulation handelt, nicht jedoch, ob eine Phasenmodulation (PM) oder eine Frequenzmodulation (FM) vorliegt.
- Aufgrund der Gleichung steht fest, dass die Nachrichtenfrequenz $f_{\rm N} = 10 \ \rm kHz$ beträgt.
- Die Phase $ϕ_{\rm N} = 0$ des Quellensignals würde dagegen nur zutreffen, wenn eine Phasenmodulation vorläge.
(2) Mit der Modulatorkonstanten $K_{\rm PM} = 2 \ \rm V^{–1}$ erhält man hierfür:
- $$v_{\rm PM}(t) = \frac{1}{K_{\rm PM}} \cdot \phi_r(t) = \frac{3}{2\,{\rm V}^{-1}} \cdot \cos(2 \pi \cdot 10\,{\rm kHz} \cdot t)\hspace{0.05cm}.$$
Für den Zeitpunkt $t = 0$ gilt deshalb:
- $$v_{\rm PM}(t = 0) = {A_{\rm N}} \hspace{0.15cm}\underline {= 1.5\,{\rm V}}\hspace{0.05cm}.$$
(3) Für das Ausgangssignal $v_{\rm FM}(t)$ des FM–Demodulators – bestehend aus PM–Demodulator und Differenzierer – kann man schreiben:
- $$v_{\rm FM}(t) = \frac{{\rm d}v_{\rm PM}(t)}{{\rm d}t} \cdot K = \frac{K \cdot A_{\rm N}}{2 \pi \cdot f_{\rm N}} \cdot (- \sin(2 \pi \cdot {f_{\rm N}} \cdot t))= \frac{K \cdot A_{\rm N}}{2 \pi \cdot f_{\rm N}} \cdot \cos(2 \pi \cdot {f_{\rm N}} \cdot t + 90^\circ)\hspace{0.05cm}.$$
Die Nachrichtenphase ist somit $ϕ_{\rm N} \hspace{0.15cm}\underline {= 90^\circ}$.
(4) In diesem Fall muss gelten: $ K ={2 \pi \cdot f_{\rm N}} \hspace{0.15cm}\underline { = 6.28 \cdot 10^{4} \,\,{1}/{ s}} \hspace{0.05cm}.$
(5) Richtig sind die Lösungsvorschläge 1, 2, 3 und 5:
- Der Phasenhub ist identisch mit dem Modulationsindex, der aus der angegebenen Gleichung abgelesen werden kann:
- $$\phi_{\rm max} = \eta = 3 = \frac{\Delta f_{\rm A}}{ f_{\rm N}} \hspace{0.05cm}.$$
- Damit erhält man den Frequenzhub $Δf_{\rm A} = 3 · f_{\rm N} = 30 \ \rm kHz$.
- Mit der Trägerfrequenz $f_{\rm T} = 1 \ \rm MHz$ kann somit die Augenblicksfrequenz $f_{\rm T}(t)$ nur Werte zwischen $1±0.03 MHz$ annehmen.
Es gilt also auch folgende Aussage:
Bei halber Nachrichtenfrequenz verdoppelt sich der Phasenhub $η$, während der Frequenzhub $Δf_{\rm A}$ davon nicht beeinflusst wird:
- $$\eta = \frac{K_{\rm PM} \cdot A_{\rm N}}{ f_{\rm N}} = 6 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\Delta f_{\rm A} = \eta \cdot f_{\rm N} = 6 \cdot 5\,{\rm kHz} = 30\,{\rm kHz}\hspace{0.05cm}.$$