Aufgaben:Aufgabe 4.11: Frequenzbereichsbetrachtung der 4–QAM: Unterschied zwischen den Versionen
Zeile 6: | Zeile 6: | ||
Ausgehend von der [[Modulationsverfahren/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK]] (binäre Phasenmodulation) mit rechteckförmigem Grundimpuls $g_s(t)$ der Breite $T_{\rm B} = 1 \ \rm μs$ und der Amplitude $s_0 = 2 \ \rm V$ soll in dieser Aufgabe das Leistungsdichtespektrum (LDS) der [[Modulationsverfahren/Quadratur–Amplitudenmodulation#Signalverl.C3.A4ufe_der_4.E2.80.93QAM|4–QAM]] schrittweise ermittelt werden. | Ausgehend von der [[Modulationsverfahren/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK]] (binäre Phasenmodulation) mit rechteckförmigem Grundimpuls $g_s(t)$ der Breite $T_{\rm B} = 1 \ \rm μs$ und der Amplitude $s_0 = 2 \ \rm V$ soll in dieser Aufgabe das Leistungsdichtespektrum (LDS) der [[Modulationsverfahren/Quadratur–Amplitudenmodulation#Signalverl.C3.A4ufe_der_4.E2.80.93QAM|4–QAM]] schrittweise ermittelt werden. | ||
− | In [ | + | In der [[Aufgaben:4.7_Spektren_von_ASK_und_BPSK| Aufgabe 4.7]] wurde das Leistungdichtespektrum ${\it Φ}_s(f)$ der BPSK für genau diese Parameterwerte ermittelt. Mit |
− | $$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz}$$ | + | :$$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz}$$ |
− | erhält man für das tatsächliche | + | erhält man für das tatsächliche Leistungsdichtespektrum (im Bandpassbereich): |
− | $${{\it \Phi}_s(f)} = \frac{A}{4} \cdot {\left [ {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f - f_{\rm T})) + {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f + f_{\rm T}))\right ]}\hspace{0.05cm}.$$ | + | :$${{\it \Phi}_s(f)} = \frac{A}{4} \cdot {\left [ {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f - f_{\rm T})) + {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f + f_{\rm T}))\right ]}\hspace{0.05cm}.$$ |
− | In der oberen Grafik ist allerdings das | + | In der oberen Grafik ist allerdings das Leistungsdichtespektrum ${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}$ des äquivalenten Tiefpass–Signals dargestellt. Dieses ergibt sich aus ${\it Φ}_s(f)$ durch |
− | $${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm si}^2(\pi f T_{\rm B}). \hspace{0.2cm}$$ | + | *Abschneiden aller Anteile bei negativen Frequenzen, |
+ | *Vervierfachen der Anteile bei positiven Frequenzen (beachten Sie: ein Spektrum muss verdoppelt werden, ein Leistungsdichtespektrum vervierfacht) und | ||
+ | *Verschieben um $f_{\rm T}$ nach links: | ||
+ | :$${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm si}^2(\pi f T_{\rm B}). \hspace{0.2cm}$$ | ||
+ | |||
Die 4–QAM unterscheidet sich von der BPSK in folgenden Details: | Die 4–QAM unterscheidet sich von der BPSK in folgenden Details: | ||
− | + | * Aufspaltung des binären Quellensignals in zwei Teilsignale mit jeweils halber Bitrate, das heißt mit der Symboldauer $T = 2 · T_{\rm B}$. | |
− | + | * Multiplikation der Teilsignale mit Cosinus und Minus–Sinus, deren Amplituden $g_0$ jeweils um den Faktor $\sqrt{2}$ kleiner sind als $s_0$. | |
− | : | + | * Summation der beiden Teilsignale, die mit $s_{\cos}(t)$ und $s_{–\sin}(t)$ bezeichnet werden: |
− | $$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$ | + | :$$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$ |
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation|Quadratur–Amplitudenmodulation]]. | *Die Aufgabe gehört zum Kapitel [[Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation|Quadratur–Amplitudenmodulation]]. | ||
− | * | + | *Bezug genommen wird aber auch auf die Seite [[Modulationsverfahren/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK – Binary Phase Shift Keying]] im vorherigen Kapitel. |
− | + | * Das Leistungsdichtespektrum (LDS) einer QAM-Komponente ist identisch mit dem vergleichbaren BPSK–LDS. | |
− | * | ||
*Energien sind in $\rm V^2s$ anzugeben; sie beziehen sich somit auf den Bezugswiderstand $R = 1 \ \rm \Omega$. | *Energien sind in $\rm V^2s$ anzugeben; sie beziehen sich somit auf den Bezugswiderstand $R = 1 \ \rm \Omega$. | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | + | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie groß ist die Energie pro Bit bei der BPSK? | + | {Wie groß ist die Energie pro Bit ⇒ $E_{\rm B}$ bei der ''Binary Phase Shift Keying'' (BPSK)? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $E_{\rm B} \ = \ $ { 2 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$ |
− | {Wie lautet das Leistungsdichtespektrum des 4–QAM–Teilsignals $s_{cos}(t)$ in der äquivalenten Tiefpassdarstellung? Welcher Wert ergibt sich bei f = 0? | + | {Wie lautet das Leistungsdichtespektrum ${\it \Phi}_{s,\hspace{0.08cm} \cos, \hspace{0.08cm}{\rm TP}}(f )$ des 4–QAM–Teilsignals $s_{\cos}(t)$ in der äquivalenten Tiefpassdarstellung? <br>Welcher Wert $A = {\it \Phi}_{s, \hspace{0.08cm}\cos, \hspace{0.08cm}{\rm TP}}(f = 0) $ ergibt sich bei der Frequenz f = 0? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $A \ = \ $ { 4 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$ |
− | {Wie lautet das Leistungsdichtespektrum des gesamten 4–QAM–Signals $s(t)$? Welcher Wert B ergibt sich hier bei der Frequenz f = 0? | + | {Wie lautet das Leistungsdichtespektrum ${\it \Phi}_{s,\hspace{0.08cm}{\rm TP}}(f )$ des gesamten 4–QAM–Signals $s(t)$? |
+ | Welcher Wert $B = {\it \Phi}_{s, \hspace{0.08cm}{\rm TP}}(f = 0) $ ergibt sich hier bei der Frequenz f = 0? | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $B \ = \ $ { 8 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$ |
− | {Wie groß ist die Energie pro Bit bei der 4–QAM? | + | {Wie groß ist die Energie pro Bit ⇒ $E_{\rm B}$ bei der ''Quadratur–Amplitudenmodulation'' (4–QAM)? |
|type="{}"} | |type="{}"} | ||
− | $ | + | $E_{\rm B} \ = \ $ { 2 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$ |
Version vom 26. Juli 2017, 13:13 Uhr
Ausgehend von der BPSK (binäre Phasenmodulation) mit rechteckförmigem Grundimpuls $g_s(t)$ der Breite $T_{\rm B} = 1 \ \rm μs$ und der Amplitude $s_0 = 2 \ \rm V$ soll in dieser Aufgabe das Leistungsdichtespektrum (LDS) der 4–QAM schrittweise ermittelt werden.
In der Aufgabe 4.7 wurde das Leistungdichtespektrum ${\it Φ}_s(f)$ der BPSK für genau diese Parameterwerte ermittelt. Mit
- $$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz}$$
erhält man für das tatsächliche Leistungsdichtespektrum (im Bandpassbereich):
- $${{\it \Phi}_s(f)} = \frac{A}{4} \cdot {\left [ {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f - f_{\rm T})) + {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f + f_{\rm T}))\right ]}\hspace{0.05cm}.$$
In der oberen Grafik ist allerdings das Leistungsdichtespektrum ${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}$ des äquivalenten Tiefpass–Signals dargestellt. Dieses ergibt sich aus ${\it Φ}_s(f)$ durch
- Abschneiden aller Anteile bei negativen Frequenzen,
- Vervierfachen der Anteile bei positiven Frequenzen (beachten Sie: ein Spektrum muss verdoppelt werden, ein Leistungsdichtespektrum vervierfacht) und
- Verschieben um $f_{\rm T}$ nach links:
- $${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm si}^2(\pi f T_{\rm B}). \hspace{0.2cm}$$
Die 4–QAM unterscheidet sich von der BPSK in folgenden Details:
- Aufspaltung des binären Quellensignals in zwei Teilsignale mit jeweils halber Bitrate, das heißt mit der Symboldauer $T = 2 · T_{\rm B}$.
- Multiplikation der Teilsignale mit Cosinus und Minus–Sinus, deren Amplituden $g_0$ jeweils um den Faktor $\sqrt{2}$ kleiner sind als $s_0$.
- Summation der beiden Teilsignale, die mit $s_{\cos}(t)$ und $s_{–\sin}(t)$ bezeichnet werden:
- $$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Quadratur–Amplitudenmodulation.
- Bezug genommen wird aber auch auf die Seite BPSK – Binary Phase Shift Keying im vorherigen Kapitel.
- Das Leistungsdichtespektrum (LDS) einer QAM-Komponente ist identisch mit dem vergleichbaren BPSK–LDS.
- Energien sind in $\rm V^2s$ anzugeben; sie beziehen sich somit auf den Bezugswiderstand $R = 1 \ \rm \Omega$.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
2. Aufgrund der doppelten Symboldauer der 4–QAM ($T = 2 · T_B$) ist die Spektralfunktion gegenüber der BPSK nur halb so breit, aber doppelt so hoch, und anstelle von $s_0$ ist nun der kleinere Wert g0 zu berücksichtigen. Der LDS–Wert bei der Frequenz f = 0 lautet damit: $${\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) = \left ({s_0}/{\sqrt{2}} \right )^2 \cdot 2 \cdot T_{\rm B} ={s_0^2 \cdot T_{\rm B}} = A \hspace{0.05cm}.$$ Es ergibt sich somit genau der gleiche Wert $$A = {\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) \hspace{0.15cm}\underline {= 4 \cdot 10^{-6}\,{\rm V^2/Hz}}$$ wie bei der BPSK.
3. Das zweite Teilsignal $s_{–sin}(t)$ liefert den genau gleichen Beitrag A wie das gerade betrachtete Signal $s_{cos}(t)$. Aufgrund der Orthogonalität zwischen der Cosinus– und der Minus–Sinusfunktion können die Leistungen addiert werden und man erhält: $$B = {\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f = 0 ) = 2 \cdot A \hspace{0.15cm}\underline {= 8 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
4. Analog zur Teilaufgabe a) erhält man für die Energie pro Bit: $$E_{\rm B} = \frac{1}{2} \cdot T_{\rm B} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{B \cdot T_{\rm B}}{2T} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f =$$ $$ = \frac{B \cdot T_{\rm B}}{2T} = \frac{8 \cdot 10^{-6}\,{\rm V^2/Hz} \cdot 1\,{\rm \mu s}}{ 2 \cdot 2\,{\rm \mu s}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$ Man erkennt, dass bei den hier getroffenen Voraussetzungen die „Energie pro Bit” bei der BPSK und der 4–QAM übereinstimmen.