Applets:Impulse und Spektren: Unterschied zwischen den Versionen
K (Guenter verschob die Seite Impulse und Spektrum nach Impulse & Spektren) |
|||
Zeile 7: | Zeile 7: | ||
Hierbei ist zu beachten: | Hierbei ist zu beachten: | ||
* Dargestellt werden $x(t)$ bzw. $X(f)$ für bis zu zwei Parametersätzen in jeweils einem Diagramm. | * Dargestellt werden $x(t)$ bzw. $X(f)$ für bis zu zwei Parametersätzen in jeweils einem Diagramm. | ||
− | * Die roten Kurven und Zahlenangaben gelten für den | + | * Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechtten Parametersatz. |
* Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $x(t)$ (Signalwerte) bzw. $X(f)$ (Spektralwerte) sind jeweils normiert. | * Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $x(t)$ (Signalwerte) bzw. $X(f)$ (Spektralwerte) sind jeweils normiert. | ||
Zeile 17: | Zeile 17: | ||
==Zur Handhabung des Programms== | ==Zur Handhabung des Programms== | ||
− | Wie im alten Programm mit Grafik | + | '''Wie im alten Programm mit Grafik''' |
==Theoretischer Hintergrund== | ==Theoretischer Hintergrund== | ||
− | ===Zusammenhang | + | ===Zusammenhang $x(t)\Leftrightarrow X(f)$=== |
− | Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|erste Fourierintegral]] gegeben: | + | *Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_erste_Fourierintegral|erste Fourierintegral]] gegeben: |
:$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} | :$$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} | ||
\rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$ | \rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$ | ||
− | Um aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ berechnen zu können, benötigt man das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|zweite Fourierintegral]]: | + | *Um aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ berechnen zu können, benötigt man das [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|zweite Fourierintegral]]: |
− | :$$x(t)={\ | + | :$$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} |
− | {\ | + | {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fouriertransformation.$$ |
+ | *In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt: | ||
+ | :$$X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t \ \ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ \ \ x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f.$$ | ||
+ | *$x(t)$ und $X(f)$ haben unterschiedliche Einheiten, z. B. $x(t)$ in $\rm V$, $X(f)$ in $\rm V/Hz$. | ||
+ | *Der Zusammenhang zwischen diesem Modul „Impulse & Spektren” und dem ähnlich aufgebauten Applet [[Tiefpaässe im Zeit- und Frequenzbereich]] basiert auf dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Vertauschungssatz|Vertauschungssatz]]. | ||
+ | *Alle Zeiten sind auf eine Normierungszeit $T$ normiert und alle Frequenzen auf $1/T \Rightarrow$ das Spektrum $X(f)$ muss noch mit $T$ multipliziert werden. | ||
+ | |||
+ | {{GraueBox|TEXT= | ||
+ | $\text{Beispiel:}$ Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si–förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$. | ||
+ | |||
+ | Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die ersteNullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.}} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ===Gaußimpuls=== | + | ===Gaussian $\Rightarrow$ Gaußimpuls=== |
*Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet: | *Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet: | ||
Zeile 50: | Zeile 53: | ||
*Praktisch ist der Gaußimpuls in Zeit und Frequenz begrenzt. Zum Beispiel ist $x(t)$ bereits bei $t=1.5 \Delta \cdot t$ auf $1\% $ des Maximums abgefallen. | *Praktisch ist der Gaußimpuls in Zeit und Frequenz begrenzt. Zum Beispiel ist $x(t)$ bereits bei $t=1.5 \Delta \cdot t$ auf $1\% $ des Maximums abgefallen. | ||
− | === | + | ===Rectangular $\Rightarrow$ Rechteckimpuls=== |
− | $\ | ||
*Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet: | *Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet: | ||
Zeile 63: | Zeile 65: | ||
*Das Integral über der Spektralfunktion $X(f)$ ist gleich dem Signalwert zum Zeitpunkt $t=0$, also der Impulsamplitude $K$. | *Das Integral über der Spektralfunktion $X(f)$ ist gleich dem Signalwert zum Zeitpunkt $t=0$, also der Impulsamplitude $K$. | ||
− | $\ | + | ===Triangular $\Rightarrow$ Dreieckimpuls=== |
*Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet: | *Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet: | ||
Zeile 75: | Zeile 77: | ||
*Der asymptotische Abfall von $X(f)$ erfolgt hier mit $1/f^2$, während zum Vergleich der Rechteckimpuls mit $1/f$ abfällt. | *Der asymptotische Abfall von $X(f)$ erfolgt hier mit $1/f^2$, während zum Vergleich der Rechteckimpuls mit $1/f$ abfällt. | ||
− | $\ | + | ===Trapezoid $\Rightarrow$ Trapezimpuls=== |
Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet: | Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet: | ||
Zeile 88: | Zeile 90: | ||
*Der asymptotische Abfall von $X(f)$ liegt zwischen $1/f$ (für Rechteck, $r=0$) und $1/f^2$ (für Dreieck, $r=1$). | *Der asymptotische Abfall von $X(f)$ liegt zwischen $1/f$ (für Rechteck, $r=0$) und $1/f^2$ (für Dreieck, $r=1$). | ||
− | $\ | + | ===Cosine-rolloff $\Rightarrow$ Cosinus-Rolloff-Impuls=== |
Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet: | Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet: | ||
Zeile 101: | Zeile 103: | ||
*Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $X(f)$ asymptotisch mit $f$ ab. | *Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $X(f)$ asymptotisch mit $f$ ab. | ||
− | $\ | + | ===Cosine-square $\Rightarrow$ Cosinus-Quadrat-Impuls=== |
*Dies ist ein Sonderfall des Cosinus-Rolloff-Impuls und ergibt sich für $r=1 \ (t_1=0, t_2= \Delta t)$: | *Dies ist ein Sonderfall des Cosinus-Rolloff-Impuls und ergibt sich für $r=1 \ (t_1=0, t_2= \Delta t)$: | ||
Zeile 117: | Zeile 119: | ||
{{LntAppletLink|spektrum}} | {{LntAppletLink|spektrum}} | ||
+ | |||
+ | |||
+ | {{Display}} |
Version vom 1. Oktober 2017, 14:05 Uhr
Applet in neuem Tab öffnen
Anmerkung: Einen auffälligen Button verwenden
Inhaltsverzeichnis
- 1 Programmbeschreibung
- 2 Zur Handhabung des Programms
- 3 Theoretischer Hintergrund
- 3.1 Zusammenhang $x(t)\Leftrightarrow X(f)$
- 3.2 Gaussian $\Rightarrow$ Gaußimpuls
- 3.3 Rectangular $\Rightarrow$ Rechteckimpuls
- 3.4 Triangular $\Rightarrow$ Dreieckimpuls
- 3.5 Trapezoid $\Rightarrow$ Trapezimpuls
- 3.6 Cosine-rolloff $\Rightarrow$ Cosinus-Rolloff-Impuls
- 3.7 Cosine-square $\Rightarrow$ Cosinus-Quadrat-Impuls
- 4 Über die Autoren
Programmbeschreibung
Dargestellt werden impulsförmige symmetrische Zeitsignale ⇒ „Impulse” $x(t)$ und die dazugehörigen Spektralfunktionen $X(f)$, nämlich Gauß–, Rechteck–, Dreieck–, Trapez–, Cosinus–Rolloff– und Cosinus–Quadrat–Impuls.
Hierbei ist zu beachten:
- Dargestellt werden $x(t)$ bzw. $X(f)$ für bis zu zwei Parametersätzen in jeweils einem Diagramm.
- Die roten Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechtten Parametersatz.
- Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $x(t)$ (Signalwerte) bzw. $X(f)$ (Spektralwerte) sind jeweils normiert.
$\text{Beispiel:}$ Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si–förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$.
Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die ersteNullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.
Zur Handhabung des Programms
Wie im alten Programm mit Grafik
Theoretischer Hintergrund
Zusammenhang $x(t)\Leftrightarrow X(f)$
- Der Zusammenhang zwischen Zeitfunktion $x(t)$ und dem Spektrum $X(f)$ ist durch das erste Fourierintegral gegeben:
- $$X(f)={\rm FT} [x(t)] = \int_{-\infty}^{+\infty}x(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$
- Um aus der Spektralfunktion $X(f)$ die Zeitfunktion $x(t)$ berechnen zu können, benötigt man das zweite Fourierintegral:
- $$x(t)={\rm IFT} [X(f)] = \int_{-\infty}^{+\infty}X(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fouriertransformation.$$
- In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
- $$X(f)=\int_{-\infty}^{+\infty}x(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t \ \ \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ \ \ x(t)=\int_{-\infty}^{+\infty}X(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f.$$
- $x(t)$ und $X(f)$ haben unterschiedliche Einheiten, z. B. $x(t)$ in $\rm V$, $X(f)$ in $\rm V/Hz$.
- Der Zusammenhang zwischen diesem Modul „Impulse & Spektren” und dem ähnlich aufgebauten Applet Tiefpaässe im Zeit- und Frequenzbereich basiert auf dem Vertauschungssatz.
- Alle Zeiten sind auf eine Normierungszeit $T$ normiert und alle Frequenzen auf $1/T \Rightarrow$ das Spektrum $X(f)$ muss noch mit $T$ multipliziert werden.
$\text{Beispiel:}$ Stellt man einen Rechteckimpuls mit Amplitude $A_1 = 1$ und äquivalenter Impulsdauer $\Delta t_1 = 1$ ein, so ist $x_1(t)$ im Bereich $-0.5 < t < +0.5$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Spektralfunktion $X_1(f)$ verläuft si–förmig mit $X_1(f= 0) = 1$ und der ersten Nullstelle bei $f=1$.
Soll mit dieser Einstellung ein Rechteckimpuls mit $A = K = 3 \ \rm V$ und $\Delta t = T = 2 \ \rm ms$ nachgebildet werden, dann sind alle Signalwerte mit $K = 3 \ \rm V$ und alle Spektralwerte mit $K \cdot T = 0.006 \ \rm V/Hz$ zu multiplizieren. Der maximale Spektralwert ist dann $X(f= 0) = 0.006 \ \rm V/Hz$ und die ersteNullstelle liegt bei $f=1/T = 0.5 \ \rm kHz$.
Gaussian $\Rightarrow$ Gaußimpuls
- Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
$$x(t)=K\cdot e^{-\pi\cdot(t/\Delta t)^2}.$$
- Die äquivalente Zeitdauer $\Delta t$ ergibt sich aus dem flächengleichen Rechteck.
- Der Wert bei t=$\Delta t/2$ ist um den Faktor 0.456 kleiner als der Wert bei $t=0$.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta t \cdot e^{-\pi(f\cdot \Delta t)^2} .$$
- Je kleiner die äquivalente Zeitdauer $\Delta t$ ist, um so breiter und niedriger ist das Spektrum (Reziprozitätsgesetz von Bandbreite und Impulsdauer).
- Sowohl $x(t)$ als auch $X(f)$ sind zu keinem $ f$- bzw. $t$-Wert exakt gleich Null.
- Praktisch ist der Gaußimpuls in Zeit und Frequenz begrenzt. Zum Beispiel ist $x(t)$ bereits bei $t=1.5 \Delta \cdot t$ auf $1\% $ des Maximums abgefallen.
Rectangular $\Rightarrow$ Rechteckimpuls
- Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < T/2,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| = T/2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| > T/2.} \\ \end{array}$$
- Der $\pm \Delta t/2$ - Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
- Für die Spektralfunktion erhält man entsprechend den Gesetzmäßigkeiten der Fouriertransformation (1. Fourierintegral):
$$X(f)=K\cdot \Delta t \cdot si(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$
- Der Spektralwert bei $f=0$ ist gleich der Rechteckfläche der Zeitfunktion.
- Die Spektralfunktion besitzt Nullstellen in äquidistanten Abständen $1/\Delta t$.
- Das Integral über der Spektralfunktion $X(f)$ ist gleich dem Signalwert zum Zeitpunkt $t=0$, also der Impulsamplitude $K$.
Triangular $\Rightarrow$ Dreieckimpuls
- Die Zeitfunktion mit der Höhe $K$ und der (äquivalenten) Dauer $\Delta t$ lautet:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|t|}{\Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$
- Die absolute Zeitdauer ist $2 \cdot \Delta t$, d.h. doppelt so groß als die des Rechtecks.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta f \cdot si^2(\pi\cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$
- Obige Zeitfunktion ist gleich der Faltung zweier Rechteckimpulse, jeweils mit Breite $\Delta t \Rightarrow X(f)$ beinhaltet anstelle der $si$-Funktion die $si^2$-Funktion.
- $X(f)$ weist somit ebenfalls Nullstellen im äquidistanten Abständen $1/\Delta f$ auf.
- Der asymptotische Abfall von $X(f)$ erfolgt hier mit $1/f^2$, während zum Vergleich der Rechteckimpuls mit $1/f$ abfällt.
Trapezoid $\Rightarrow$ Trapezimpuls
Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{t_2-|t|}{t_2-t_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$
- Für die äquivalente Zeitdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
- Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
- Sonderfall $r=0$: Rechteckimpuls. Sonderfall $r=1$: Dreieckimpuls.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta t \cdot si(\pi\cdot \Delta t \cdot f)\cdot si(\pi \cdot r \cdot \Delta t \cdot f) \quad \text{mit} \ si(x)=\frac{sin(x)}{x}.$$
- Der asymptotische Abfall von $X(f)$ liegt zwischen $1/f$ (für Rechteck, $r=0$) und $1/f^2$ (für Dreieck, $r=1$).
Cosine-rolloff $\Rightarrow$ Cosinus-Rolloff-Impuls
Die Zeitfunktion mit der Höhe $K$ und den Zeitparametern $t_1$ und $t_2$ lautet:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|t|-t_1}{t_2-t_1}\cdot \frac{\pi}{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| \le t_1,} \\ {t_1\le \left| \hspace{0.05cm}t\hspace{0.05cm} \right| \le t_2,} \\ {\left|\hspace{0.05cm} t \hspace{0.05cm} \right| \ge t_2.} \\ \end{array}$$
- Für die äquivalente Zeitdauer (flächengleiches Rechteck) gilt: $\Delta t = t_1+t_2$.
- Der Rolloff-Faktor (im Zeitbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{t_2-t_1}{t_2+t_1}.$$
- Sonderfall $r=0$: Rechteckimpuls. Sonderfall $r=1$: Cosinus$^2$-Impuls.
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta t \cdot \frac{\cos(\pi \cdot r\cdot \Delta t \cdot f)}{1-(2\cdot r\cdot \Delta t \cdot f)^2} \cdot si(\pi \cdot \Delta t \cdot f).$$
- Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $X(f)$ asymptotisch mit $f$ ab.
Cosine-square $\Rightarrow$ Cosinus-Quadrat-Impuls
- Dies ist ein Sonderfall des Cosinus-Rolloff-Impuls und ergibt sich für $r=1 \ (t_1=0, t_2= \Delta t)$:
$$x(t) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|t|\cdot \pi}{2\cdot \Delta t}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} t\hspace{0.05cm} \right| < \Delta t,} \\ {\left| \hspace{0.05cm}t\hspace{0.05cm} \right| \ge \Delta t.} \\ \end{array}$$
- Für die Spektralfunktion erhält man gemäß der Fouriertransformation:
$$X(f)=K\cdot \Delta f \cdot \frac{\pi}{4}\cdot [si(\pi(\Delta t\cdot f +0.5))+si(\pi(\Delta t\cdot f -0.5))]\cdot si(\pi \cdot \Delta t \cdot f).$$
- Wegen der letzten $si$-Funktion ist $X(f)=0$ für alle Vielfachen von $F=1/\Delta t$. Die äquidistanten Nulldurchgänge des Cos-Rolloff-Impulses bleiben erhalten.
- Aufgrund des Klammerausdrucks weist $X(f)$ nun weitere Nulldurchgänge bei $f=\pm1.5 F$, $\pm2.5 F$, $\pm3.5 F$, ... auf.
- Für die Frequenz $f=\pm F/2$ erhält man die Spektralwerte $K\cdot \Delta t/2$.
- Der asymptotische Abfall von $X(f)$ verläuft in diesem Sonderfall mit $1/f^3$.
Über die Autoren