Aufgaben:Aufgabe 1.10: BPSK–Basisbandmodell: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/Lineare digitale Modulation – Kohärente Demodulation }} [[Datei:|right|]] ===Fragebogen=== <quiz disp…“)
 
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:|right|]]
+
[[Datei:P_ID1683__Dig_A_4_3.png|right|frame|Unsymmetrischer Kanalfrequenzgang]]
 +
Wir betrachten in dieser Aufgabe ein BPSK–System mit kohärenter Demodulation, das heißt, es gilt
 +
:$$s(t) \ = \  z(t) \cdot q(t),$$
 +
:$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$
 +
Die hier gewählten Bezeichnungen lehnen sich an das [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation#Gemeinsames_Blockschaltbild_f.C3.BCr_ASK_und_BPSK|Blockschaltbild]] im Theorieteil an.
 +
Der Einfluss eines Kanalfrequenzgangs $H_{\rm K}(f)$ lässt sich in einfacher Weise berücksichtigen, wenn man diesen zusammen mit Modulator und Demodulator durch einen gemeinsamen Basisbandfrequenzgang beschreibt:
 +
:$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] .$$
 +
Damit werden
 +
*Modulator und Demodulator quasi gegeneinander gekürzt,
 +
*der Bandpasskanal $H_{\rm K}(f)$ in den Tiefpassbereich transformiert.
  
 +
 +
Die resultierende Übertragungsfunktion $H_{\rm MKD}(f)$ sollte man nicht mit der Tiefpass–Übertragungsfunktion $H_{\rm K,TP}(f)$ gemäß der Beschreibung in [[Signaldarstellung/Äquivalentes_Tiefpass-Signal_und_zugehörige_Spektralfunktion|Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion]] des Buches „Signaldarstellung” verwechseln, die sich aus $H_{\rm K}(f)$ durch Abschneiden der Anteile bei negativen Frequenzen sowie einer Frequenzverschiebung um $f_{\rm T}$ nach links ergibt.
 +
 +
''Hinweis:''
 +
 +
Die Aufgabe gehört zum Themengebiet von [[Digitalsignalübertragung/Lineare_digitale_Modulation_–_Kohärente_Demodulation|Lineare digitale Modulation – Kohärente Demodulation]].
  
 
===Fragebogen===
 
===Fragebogen===

Version vom 7. November 2017, 15:07 Uhr

Unsymmetrischer Kanalfrequenzgang

Wir betrachten in dieser Aufgabe ein BPSK–System mit kohärenter Demodulation, das heißt, es gilt

$$s(t) \ = \ z(t) \cdot q(t),$$
$$b(t) \ = \ 2 \cdot z(t) \cdot r(t) .$$

Die hier gewählten Bezeichnungen lehnen sich an das Blockschaltbild im Theorieteil an. Der Einfluss eines Kanalfrequenzgangs $H_{\rm K}(f)$ lässt sich in einfacher Weise berücksichtigen, wenn man diesen zusammen mit Modulator und Demodulator durch einen gemeinsamen Basisbandfrequenzgang beschreibt:

$$H_{\rm MKD}(f) = {1}/{2} \cdot \left [ H_{\rm K}(f-f_{\rm T}) + H_{\rm K}(f+f_{\rm T})\right ] .$$

Damit werden

  • Modulator und Demodulator quasi gegeneinander gekürzt,
  • der Bandpasskanal $H_{\rm K}(f)$ in den Tiefpassbereich transformiert.


Die resultierende Übertragungsfunktion $H_{\rm MKD}(f)$ sollte man nicht mit der Tiefpass–Übertragungsfunktion $H_{\rm K,TP}(f)$ gemäß der Beschreibung in Äquivalentes Tiefpass-Signal und zugehörige Spektralfunktion des Buches „Signaldarstellung” verwechseln, die sich aus $H_{\rm K}(f)$ durch Abschneiden der Anteile bei negativen Frequenzen sowie einer Frequenzverschiebung um $f_{\rm T}$ nach links ergibt.

Hinweis:

Die Aufgabe gehört zum Themengebiet von Lineare digitale Modulation – Kohärente Demodulation.

Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)