Aufgaben:Aufgabe 1.4: Rayleigh–WDF und Jakes–LDS: Unterschied zwischen den Versionen
Tasnad (Diskussion | Beiträge) |
|||
Zeile 2: | Zeile 2: | ||
{{quiz-Header|Buchseite=Mobile Kommunikation/Statistische Bindungen innerhalb des Rayleigh-Prozesses}} | {{quiz-Header|Buchseite=Mobile Kommunikation/Statistische Bindungen innerhalb des Rayleigh-Prozesses}} | ||
− | [[Datei:P_ID2119__Mob_A_1_4.png|right|frame]] | + | [[Datei:P_ID2119__Mob_A_1_4.png|right|frame|WDF und |<i>z</i>(<i>t</i>)| bei Rayleigh-Fading mit Dopplereinfluss]] |
− | Wir betrachten zwei verschiedene Mobilfunkkanäle mit [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Beispielhafte_Signalverl.C3.A4ufe_bei_Rayleigh.E2.80.93Fading| | + | Wir betrachten zwei verschiedene Mobilfunkkanäle mit [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings#Beispielhafte_Signalverl.C3.A4ufe_bei_Rayleigh.E2.80.93Fading|Rayleigh–Fading]]. In beiden Fällen lässt sich die WDF des Betrags $a(t) = |z(t)| ≥ 0$ in folgender Weise darstellen: |
:$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2}{2\sigma^2}] | :$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2}{2\sigma^2}] | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Die Wahrscheinlichkeit, dass dieser Betrag kleiner oder gleich einem vorgegebenen Wert | + | Die Wahrscheinlichkeit, dass dieser Betrag kleiner oder gleich einem vorgegebenen Wert $A$ ist, kann wie folgt berechnet werden: |
:$${\rm Pr}(|z(t)| \le A) = 1 - {\rm exp} [ -\frac{A^2}{2\sigma^2}] | :$${\rm Pr}(|z(t)| \le A) = 1 - {\rm exp} [ -\frac{A^2}{2\sigma^2}] | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Die beiden Kanäle, die entsprechend den Farben „Rot” und „Blau” in den Grafiken mit (R) bzw. (B) bezeichnet werden, unterscheiden sich durch die Geschwindigkeit $\upsilon$ und damit in der Form des Leistungsdichtespektrums $\Phi_z( | + | Die beiden Kanäle, die entsprechend den Farben „Rot” und „Blau” in den Grafiken mit (R) bzw. (B) bezeichnet werden, unterscheiden sich durch die Geschwindigkeit $\upsilon$ und damit in der Form des Leistungsdichtespektrums $\Phi_z(f_{\rm D})$. In beiden Fällen ergibt sich aber ein [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses#AKF_und_LDS_bei_Rayleigh.E2.80.93Fading|Jakes–Spektrum]]. |
− | Für eine Dopplerfrequenz $ | + | Für eine Dopplerfrequenz $f_{\rm D}$, deren Betrag kleiner als ein Grenzwert $f_{\rm D, max}$ ist, lautet die Gleichung: |
:$${\it \Phi}_z(f_{\rm D}) = \frac{1}{\pi \hspace{-0.05cm}\cdot \hspace{-0.05cm}f_{\rm D, \hspace{0.05cm} max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\sqrt{ 1 \hspace{-0.05cm}- \hspace{-0.05cm}(f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 } } | :$${\it \Phi}_z(f_{\rm D}) = \frac{1}{\pi \hspace{-0.05cm}\cdot \hspace{-0.05cm}f_{\rm D, \hspace{0.05cm} max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\sqrt{ 1 \hspace{-0.05cm}- \hspace{-0.05cm}(f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 } } | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Zeile 20: | Zeile 20: | ||
Hierbei bezeichnet $J_0(.)$ die <i>Besselfunktion erster Art und nullter Ordnung</i>. Es gilt $J_0(0) = 1$. | Hierbei bezeichnet $J_0(.)$ die <i>Besselfunktion erster Art und nullter Ordnung</i>. Es gilt $J_0(0) = 1$. | ||
− | Vom Kanalmodell (R) ist die maximale Dopplerfrequenz bekannt: $f_{\rm D, max} = 200 Hz$. Außerdem ist bekannt, dass sich die Geschwindigkeiten $\ | + | Vom Kanalmodell (R) ist die maximale Dopplerfrequenz bekannt: $f_{\rm D, max} = 200 \ \rm Hz$. Außerdem ist bekannt, dass sich die Geschwindigkeiten $\upsilon_{\rm R}$ und $\upsilon_{\rm B}$ um den Faktor 2 unterscheiden. Ob $\upsilon_{\rm R}$ doppelt so groß ist als $\upsilon_{\rm B}$ oder umgekehrt, sollen Sie anhand der obigen Grafiken entscheiden. |
− | + | ''Hinweis:'' | |
− | + | * Die Aufgabe gehört zum Themengebiet von [[Mobile_Kommunikation/Statistische_Bindungen_innerhalb_des_Rayleigh%E2%80%93Prozesses|Statistische Bindungen innerhalb des Rayleigh–Prozesses]]. | |
+ | * Zur Überprüfung Ihrer Ergebnisse können Sie folgendes Interaktionsmodul benutzen: [http://www.lntwww.de/cgi-bin/extern/swf-sitemap.pl?swf_id=281&swf=wdf_vtf.swf&swf_hoehe=500&swf_breite=620| WDF, VTF und Momente] | ||
Version vom 27. Oktober 2017, 10:12 Uhr
Wir betrachten zwei verschiedene Mobilfunkkanäle mit Rayleigh–Fading. In beiden Fällen lässt sich die WDF des Betrags $a(t) = |z(t)| ≥ 0$ in folgender Weise darstellen:
- $$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2}{2\sigma^2}] \hspace{0.05cm}.$$
Die Wahrscheinlichkeit, dass dieser Betrag kleiner oder gleich einem vorgegebenen Wert $A$ ist, kann wie folgt berechnet werden:
- $${\rm Pr}(|z(t)| \le A) = 1 - {\rm exp} [ -\frac{A^2}{2\sigma^2}] \hspace{0.05cm}.$$
Die beiden Kanäle, die entsprechend den Farben „Rot” und „Blau” in den Grafiken mit (R) bzw. (B) bezeichnet werden, unterscheiden sich durch die Geschwindigkeit $\upsilon$ und damit in der Form des Leistungsdichtespektrums $\Phi_z(f_{\rm D})$. In beiden Fällen ergibt sich aber ein Jakes–Spektrum. Für eine Dopplerfrequenz $f_{\rm D}$, deren Betrag kleiner als ein Grenzwert $f_{\rm D, max}$ ist, lautet die Gleichung:
- $${\it \Phi}_z(f_{\rm D}) = \frac{1}{\pi \hspace{-0.05cm}\cdot \hspace{-0.05cm}f_{\rm D, \hspace{0.05cm} max} \hspace{-0.05cm}\cdot \hspace{-0.05cm}\sqrt{ 1 \hspace{-0.05cm}- \hspace{-0.05cm}(f_{\rm D}/f_{\rm D, \hspace{0.05cm} max})^2 } } \hspace{0.05cm}.$$
Dopplerfrequenzen außerhalb dieses Intervalls von $–f_{\rm D, max}$ bis $+f_{\rm D, max}$ sind ausgeschlossen. Die entsprechende Beschreibungsgröße im Zeitbereich ist die Autokorrelationsfunktion (AKF):
- $$\varphi_z ({\rm \Delta}t) = 2 \sigma^2 \cdot {\rm J_0}(2\pi \cdot f_{\rm D, \hspace{0.05cm} max} \cdot {\rm \Delta}t)\hspace{0.05cm}.$$
Hierbei bezeichnet $J_0(.)$ die Besselfunktion erster Art und nullter Ordnung. Es gilt $J_0(0) = 1$. Vom Kanalmodell (R) ist die maximale Dopplerfrequenz bekannt: $f_{\rm D, max} = 200 \ \rm Hz$. Außerdem ist bekannt, dass sich die Geschwindigkeiten $\upsilon_{\rm R}$ und $\upsilon_{\rm B}$ um den Faktor 2 unterscheiden. Ob $\upsilon_{\rm R}$ doppelt so groß ist als $\upsilon_{\rm B}$ oder umgekehrt, sollen Sie anhand der obigen Grafiken entscheiden.
Hinweis:
- Die Aufgabe gehört zum Themengebiet von Statistische Bindungen innerhalb des Rayleigh–Prozesses.
- Zur Überprüfung Ihrer Ergebnisse können Sie folgendes Interaktionsmodul benutzen: WDF, VTF und Momente
Fragebogen
Musterlösung
- $$f_a(a) \hspace{-0.1cm} = \hspace{-0.1cm} \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2}{2\sigma^2}] \hspace{0.05cm},\\ \frac{{\rm d}f_a(a)}{{\rm d}a} \hspace{-0.1cm} = \hspace{-0.1cm} \frac{1}{\sigma^2} \cdot {\rm exp} [ -\frac{a}{2\sigma^2}]- \frac{a^2}{\sigma^4} \cdot {\rm exp} [ -\frac{a^2}{2\sigma^2}] \hspace{0.05cm}.$$
Durch Nullsetzen der Ableitung lässt sich zeigen, dass das WDF–Maximum bei a = σ auftritt. Da die Rayleigh–WDF für beide Kanäle gilt, folgt daraus:
- $$\sigma_{\rm R} = \sigma_{\rm B} \hspace{0.15cm} \underline{ = 1} \hspace{0.05cm}.$$
2. Wegen der gleichen WDF ist auch die gesuchte Wahrscheinlichkeit für beide Kanäle gleich. Mit der angegebenen Gleichung erhält man hierfür:
- $${\rm Pr}(a \le 0.316) = {\rm Pr}(20 \cdot {\rm lg}\hspace{0.15cm} a \le -10\,\,{\rm dB}) = 1 - {\rm exp} [ -\frac{0.316^2}{2\sigma^2}] = 1- 0.951 \hspace{0.15cm} \underline{ \approx 4.9 \%} \hspace{0.05cm}.$$
3. Richtig sind die Lösungsvorschläge 2, 3 und 6:
- Die kleinere Geschwindigkeit $\upsilon_B$ erkennt man daran, dass sich der Betrag $|z(t)|$ bei der blauen Kurve langsamer ändert.
- Bei stehendem Fahrzeug entartet das LDS zu $\Phi_z(f_D) = 2\sigma^2\cdot \delta(f_D)$, und es ist $|z(t)| = A = const.$, wobei die Konstante $A$ entsprechend der Rayleighverteilung ausgewürfelt wird.
- Bei extrem hoher Geschwindigkeit wird das Jakes–Spektrum über einen immer größeren Bereich flach und immer kleiner; es nähert sich dann dem LDS von weißem Rauschen an. Allerdings müsste dazu $\upsilon$ schon in der Größenordnung der Lichtgeschwindigkeit sein.
4. Richtig sind hier die beiden Aussagen 2 und 3. Durch den Rayleigh–Parameter $\sigma = 1$ liegt auch die „Leistung” $E[|z(t)|^2] = 2\sigma^2 = 2$ des Zufallsprozesses fest. Somit gilt sowohl für (R) als auch für (B):
- $$\varphi_z ({\rm \Delta}t = 0) = 2 \hspace{0.05cm}, \hspace{0.2cm} \int_{-\infty}^{+\infty}{\it \Phi}_z(f_{\rm D}) \hspace{0.15cm}{\rm d}f_{\rm D} = 2 \hspace{0.05cm}.$$