Aufgaben:Aufgabe 1.2: Bitfehlerquote (BER): Unterschied zwischen den Versionen
Zeile 70: | Zeile 70: | ||
− | '''(2)''' Die Streuung der Gaußschen Zufallsgröße $\rm BER$ ergibt sich mit $N = 10^6$ und $p = 10^{-2}$ zu | + | '''(2)''' Die Streuung der Gaußschen Zufallsgröße $\rm BER$ ergibt sich mit $N = 10^6$ und $p = 10^{-2}$ zu |
:$$\sigma = \sqrt{{ p\cdot (\rm 1- \it p)}/{N}}\approx \sqrt{{ p}/{N}}\hspace{0.1cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$ | :$$\sigma = \sqrt{{ p\cdot (\rm 1- \it p)}/{N}}\approx \sqrt{{ p}/{N}}\hspace{0.1cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$ | ||
− | '''(3)''' Die Wahrscheinlichkeit, dass die Bitfehlerrate (kurz BER) einen Wert außerhalb des Bereichs | + | '''(3)''' Die Wahrscheinlichkeit, dass die Bitfehlerrate (kurz $\rm BER$) einen Wert außerhalb des Bereichs |
− | + | $0.95 \cdot p$ ... $1.05 \cdot p$ annimmt, kann mit $\varepsilon = 5 \cdot 0^{-4}$ ($p = 10^{-2}$) wie folgt berechnet werden: | |
− | $${\rm Pr} \left( {\rm BER} < 0.95 \cdot 10^{-2} \right) | + | :$${\rm Pr} \left( {\rm BER} < 0.95 \cdot 10^{-2} \right) |
= {\rm Pr} \left( {\rm BER} > 1.05 \cdot 10^{-2} \right) | = {\rm Pr} \left( {\rm BER} > 1.05 \cdot 10^{-2} \right) | ||
= {\rm Q} \left({\varepsilon}/{\sigma} \right)$$ | = {\rm Q} \left({\varepsilon}/{\sigma} \right)$$ | ||
− | $$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - p| > \varepsilon \right) | + | :$$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - p| > \varepsilon \right) |
− | = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-4}}{10^{-4}} \right) = 2 \cdot 0.287 \cdot 10^{-6}\hspace{0.1cm}\underline {= 0. | + | = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-4}}{10^{-4}} \right) = 2 \cdot 0.287 \cdot 10^{-6}\hspace{0.1cm}\underline {= 0.00574 \cdot 10^{-4}}\hspace{0.05cm}.$$ |
− | '''(4)''' Mit | + | '''(4)''' Mit $p = 10^{-4}$ gilt für die vergleichbare Wahrscheinlichkeit: |
− | $${\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) | + | :$${\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) |
= 2 \cdot {\rm Q} \left( {\varepsilon}/{\sigma} | = 2 \cdot {\rm Q} \left( {\varepsilon}/{\sigma} | ||
− | \right)\hspace{0. | + | \right);\hspace{0.5cm} |
− | + | \text{mit}\hspace{0.5cm}\sigma \approx \sqrt{{ p}/{N}}= | |
10^{-5}\hspace{0.05cm}, \hspace{0.3cm}\varepsilon = 5 \cdot | 10^{-5}\hspace{0.05cm}, \hspace{0.3cm}\varepsilon = 5 \cdot | ||
− | 10^{-6}:$$ | + | 10^{-6}\text{:}$$ |
− | $$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) | + | :$$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) |
= 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-6}}{10^{-5}} \right) = 2 \cdot 0.309 \hspace{0.1cm}\underline {= 0.618} \hspace{0.05cm}.$$ | = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-6}}{10^{-5}} \right) = 2 \cdot 0.309 \hspace{0.1cm}\underline {= 0.618} \hspace{0.05cm}.$$ | ||
− | '''(5)''' Diese Bedingung lässt sich mit | + | '''(5)''' Diese Bedingung lässt sich mit $\varepsilon = 5 \cdot 0^{-6}$ wie folgt formulieren: |
− | $${\rm Q} \left( {\varepsilon}/{\sigma} \right) < 0.1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | + | :$${\rm Q} \left( {\varepsilon}/{\sigma} \right) < 0.1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} |
{\varepsilon}/{\sigma} > {\rm Q}^{-1}(0.05) \approx 1.64 | {\varepsilon}/{\sigma} > {\rm Q}^{-1}(0.05) \approx 1.64 | ||
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} | \hspace{0.3cm}\Rightarrow \hspace{0.3cm} | ||
\frac{\varepsilon^2}{\sigma^2}\approx \frac{\varepsilon^2 \cdot | \frac{\varepsilon^2}{\sigma^2}\approx \frac{\varepsilon^2 \cdot | ||
N}{p}> 1.64^2 = 2.69$$ | N}{p}> 1.64^2 = 2.69$$ | ||
− | $$\Rightarrow \hspace{0.3cm} N > | + | :$$\Rightarrow \hspace{0.3cm} N > |
\frac{2.69 \cdot p}{\varepsilon^2}= \frac{2.69 \cdot 10^{-4}}{25 | \frac{2.69 \cdot p}{\varepsilon^2}= \frac{2.69 \cdot 10^{-4}}{25 | ||
− | \cdot10^{-12}}\hspace{0.1cm}\underline {\approx | + | \cdot10^{-12}}\hspace{0.1cm}\underline {\approx 10.8 \cdot 10^{6}}\hspace{0.05cm}.$$ |
Version vom 26. Oktober 2017, 08:05 Uhr
Von einem digitalen Übertragungssystem ist bekannt, dass es durch ein BSC–Modell (Binary Symmetrical Channel) mit Fehlerwahrscheinlichkeit $p$ angenähert werden kann.
Zur Verifizierung soll die Bitfehlerquote ermittelt werden, indem man die Sinkensymbolfolge $ \langle v_\nu \rangle $ mit der Quellensymbolfolge $ \langle q_\nu \rangle $ vergleicht und daraus die Fehlerfolge $ \langle e_\nu \rangle $ ermittelt. Dabei gilt:
$$e_\nu = \left\{ \begin{array}{c} 0 \\ 1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} v_\nu = q_\nu \hspace{0.05cm}, \\ v_\nu \ne q_\nu . \\ \end{array}$$ Die Bitfehlerquote (englisch: Bit Error Rate) ist eine Näherung für die Bitfehlerwahrscheinlichkeit $p$:
- $${\rm BER} = \frac{1}{N}\cdot\sum_{\nu=1}^N e_\nu.$$
Je größer der Simulationsparameter $N$ gewählt wird, um so genauer ist diese Näherung.
Aus der Aufgabe 3.7 im Buch „Stochastische Signaltheorie” ist bekannt, dass die Zufallsgröße „BER” eigentlich binominalverteilt ist, aber mit guter Näherung durch eine (diskrete) Gaußverteilung mit dem Mittelwert $p$ und der Streuung $\sigma$ angenähert werden kann:
- $$\sigma = \sqrt{\frac{ p\cdot (\rm 1- \it p)}{N}}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlerwahrscheinlichkeit bei Basisbandübertragung.
- Bezug genommen wird auch auf das Kapitel Gaußverteilte Zufallsgrößen im Buch „Stochastische Signaltheorie”.
- In der Tabelle sind einige Werte der Gaußschen Fehlerfunktionen $\rm \phi(x)$ und $\rm Q(x)$ angegeben.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $\rm BER$ ist als Quotient aus der Anzahl $n_{\rm B}$ der festgestellten Symbolfehler und der Anzahl $N$ aller simulierten Symbole und damit tatsächlich als relative Häufigkeit definiert.
- Die Wahrscheinlichkeit, dass $\rm BER = p$ gilt, ist stets genau 0, da $\rm BER$ eine kontinuierliche Zufallsgröße darstellt.
- Allerdings wird die Wahrscheinlichkeit, dass $\rm BER$ in einem schmalen Intervall um $p$ liegt, mit steigendem $N$ immer größer.
(2) Die Streuung der Gaußschen Zufallsgröße $\rm BER$ ergibt sich mit $N = 10^6$ und $p = 10^{-2}$ zu
- $$\sigma = \sqrt{{ p\cdot (\rm 1- \it p)}/{N}}\approx \sqrt{{ p}/{N}}\hspace{0.1cm}\underline {= 10^{-4}}\hspace{0.05cm}.$$
(3) Die Wahrscheinlichkeit, dass die Bitfehlerrate (kurz $\rm BER$) einen Wert außerhalb des Bereichs $0.95 \cdot p$ ... $1.05 \cdot p$ annimmt, kann mit $\varepsilon = 5 \cdot 0^{-4}$ ($p = 10^{-2}$) wie folgt berechnet werden:
- $${\rm Pr} \left( {\rm BER} < 0.95 \cdot 10^{-2} \right) = {\rm Pr} \left( {\rm BER} > 1.05 \cdot 10^{-2} \right) = {\rm Q} \left({\varepsilon}/{\sigma} \right)$$
- $$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - p| > \varepsilon \right) = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-4}}{10^{-4}} \right) = 2 \cdot 0.287 \cdot 10^{-6}\hspace{0.1cm}\underline {= 0.00574 \cdot 10^{-4}}\hspace{0.05cm}.$$
(4) Mit $p = 10^{-4}$ gilt für die vergleichbare Wahrscheinlichkeit:
- $${\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) = 2 \cdot {\rm Q} \left( {\varepsilon}/{\sigma} \right);\hspace{0.5cm} \text{mit}\hspace{0.5cm}\sigma \approx \sqrt{{ p}/{N}}= 10^{-5}\hspace{0.05cm}, \hspace{0.3cm}\varepsilon = 5 \cdot 10^{-6}\text{:}$$
- $$\Rightarrow \hspace{0.3cm}{\rm Pr} \left( |{\rm BER} - 10^{-4}| > 0.05 \cdot 10^{-4} \right) = 2 \cdot {\rm Q} \left( \frac{5 \cdot 10^{-6}}{10^{-5}} \right) = 2 \cdot 0.309 \hspace{0.1cm}\underline {= 0.618} \hspace{0.05cm}.$$
(5) Diese Bedingung lässt sich mit $\varepsilon = 5 \cdot 0^{-6}$ wie folgt formulieren:
- $${\rm Q} \left( {\varepsilon}/{\sigma} \right) < 0.1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {\varepsilon}/{\sigma} > {\rm Q}^{-1}(0.05) \approx 1.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{\varepsilon^2}{\sigma^2}\approx \frac{\varepsilon^2 \cdot N}{p}> 1.64^2 = 2.69$$
- $$\Rightarrow \hspace{0.3cm} N > \frac{2.69 \cdot p}{\varepsilon^2}= \frac{2.69 \cdot 10^{-4}}{25 \cdot10^{-12}}\hspace{0.1cm}\underline {\approx 10.8 \cdot 10^{6}}\hspace{0.05cm}.$$