Aufgaben:Aufgabe 1.4Z: Zum Dopplereffekt: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 11: Zeile 11:
 
* die Maximalgeschwindigkeit $\upsilon_2 = 3 \ {\rm km/s} (10800 \ {\rm km/h})$ bei unbemanntem Testflug,
 
* die Maximalgeschwindigkeit $\upsilon_2 = 3 \ {\rm km/s} (10800 \ {\rm km/h})$ bei unbemanntem Testflug,
 
* etwa die Höchstgeschwindigkeit $\upsilon_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$ auf Bundesstraßen.
 
* etwa die Höchstgeschwindigkeit $\upsilon_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$ auf Bundesstraßen.
 +
  
 
Die im Theorieteil angegebenen Gleichungen für die Empfangsfrequenz lauten
 
Die im Theorieteil angegebenen Gleichungen für die Empfangsfrequenz lauten

Version vom 28. Oktober 2017, 11:15 Uhr

Zur Berechnung von Dopplerfrequenzen

Als „Dopplereffekt” bezeichnet man die Veränderung der wahrgenommenen Frequenz von Wellen jeder Art, während sich Quelle (Sender) und Beobachter (Empfänger) relativ zueinander bewegen.

Wir gehen stets von einem festen Sender aus, während sich der Empfänger in vier verschiedene Richtungen (A), (B), (C) und (D) bewegen kann (siehe Grafik).

Untersucht werden sollen verschiedene Geschwindigkeiten:

  • eine unrealistisch große Geschwindigkeit $\upsilon_1 = 0.6 \cdot c = 1.8 \cdot 10^8 \ {\rm m/s}$,
  • die Maximalgeschwindigkeit $\upsilon_2 = 3 \ {\rm km/s} (10800 \ {\rm km/h})$ bei unbemanntem Testflug,
  • etwa die Höchstgeschwindigkeit $\upsilon_3 = 30 \ {\rm m/s} = 108 \ \rm km/h$ auf Bundesstraßen.


Die im Theorieteil angegebenen Gleichungen für die Empfangsfrequenz lauten

  • unter Berücksichtigung der Relativitätstheorie (kurz als „relativistisch” bezeichnet
$${\rm Gleichung \hspace{0.15cm}(1):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \frac{\sqrt{1 - (v/c)^2}}{1 - v/c \cdot \cos(\alpha)} \hspace{0.05cm},$$
  • ohne Berücksichtigung relativistischer Eigenschaften (kurz „herkömmlich”):
$${\rm Gleichung \hspace{0.15cm}(2):}\hspace{0.2cm}f_{\rm E} = f_{\rm S} \cdot \left [ 1 + {v}/{c} \cdot \cos(\alpha) \right ] \hspace{0.05cm}.$$


Hinweis: