Applets:Periodendauer periodischer Signale: Unterschied zwischen den Versionen
Zeile 16: | Zeile 16: | ||
<br> | <br> | ||
*Ein ''periodisches Signal'' $x(t)$ liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von $t$ und alle ganzzahligen Werte von $i$ mit einem geeigneten $T_{0}$ gilt: $x(t+i\cdot T_{0}) = x(t)$. Man bezeichnet $T_0$ als die '''Periodendauer''' und $f_0 = 1/T_0$ als die '''Grundfrequenz'''. | *Ein ''periodisches Signal'' $x(t)$ liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von $t$ und alle ganzzahligen Werte von $i$ mit einem geeigneten $T_{0}$ gilt: $x(t+i\cdot T_{0}) = x(t)$. Man bezeichnet $T_0$ als die '''Periodendauer''' und $f_0 = 1/T_0$ als die '''Grundfrequenz'''. | ||
− | |||
*Bei einer harmonischen Schwingung $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$ gilt $f_0 = f_1$ und $T_0 = 1/f_1$, unabhängig von der Phase $\varphi_1$ und der Amplitude $A_1 \ne 0$. | *Bei einer harmonischen Schwingung $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$ gilt $f_0 = f_1$ und $T_0 = 1/f_1$, unabhängig von der Phase $\varphi_1$ und der Amplitude $A_1 \ne 0$. | ||
Zeile 37: | Zeile 36: | ||
'''(c)''' $f_1' = 1.0$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ ⇒ $T_0 = 2.0\ \rm ms$; | '''(c)''' $f_1' = 1.0$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ ⇒ $T_0 = 2.0\ \rm ms$; | ||
− | '''(d)''' $f_1' = 0.9$, $f_2' = | + | '''(d)''' $f_1' = 0.9$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$ ⇒ $T_0 = 10.0 \ \rm ms$; |
'''(e)''' $f_2' = \sqrt{2} \cdot f_1' $ ⇒ $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ ⇒ $T_0 \to \infty$ ⇒ Das Signal $x(t)$ ist nicht periodisch.}} | '''(e)''' $f_2' = \sqrt{2} \cdot f_1' $ ⇒ $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ ⇒ $T_0 \to \infty$ ⇒ Das Signal $x(t)$ ist nicht periodisch.}} | ||
Zeile 48: | Zeile 47: | ||
Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel | Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel | ||
− | '''(a)''' $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches. | + | '''(a)''' $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches. |
==Vorschlag für die Versuchsdurchführung== | ==Vorschlag für die Versuchsdurchführung== | ||
Zeile 62: | Zeile 61: | ||
'''(2)''' Variieren Sie bei der bestehenden Einstellung $\varphi_1$ und $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ\text{:}$}} | '''(2)''' Variieren Sie bei der bestehenden Einstellung $\varphi_1$ und $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ\text{:}$}} | ||
− | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ | + | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ bleibt erhalten. |
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
'''(3)''' Wählen Sie die Voreinstellung ⇒ „Recall Parameters” und variieren Sie $A_1'$ im gesamten möglichen Bereich $0 \le A_1' \le 1\text{:}$}} | '''(3)''' Wählen Sie die Voreinstellung ⇒ „Recall Parameters” und variieren Sie $A_1'$ im gesamten möglichen Bereich $0 \le A_1' \le 1\text{:}$}} | ||
− | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ | + | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ bleibt erhalten mit Ausnahme von $A_1' =0$. In diesem Fall ist $T_0 = 0.4 \ \rm ms$. |
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
Zeile 87: | Zeile 86: | ||
'''(7)''' Wie groß ist bei gleicher Einstellung der maximale Signalwert $x_{\rm max}\text{?}$}} | '''(7)''' Wie groß ist bei gleicher Einstellung der maximale Signalwert $x_{\rm max}\text{?}$}} | ||
− | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert | + | $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist $x_{\rm max} =x(t_* + i \cdot T_0) = 1.39 \ \rm V$ mit $t_* = $ |
− | |||
{{BlaueBox|TEXT= | {{BlaueBox|TEXT= | ||
'''(8)''' Wählen Sie die letzte Einstellung ⇒ „Recall Parameters” und ändern Sie $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen:}} | '''(8)''' Wählen Sie die letzte Einstellung ⇒ „Recall Parameters” und ändern Sie $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen:}} |
Version vom 2. November 2017, 18:42 Uhr
Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:
Applet-Variante 1 in neuem Tab öffnen Applet-Variante 2 in neuem Tab öffnen
Inhaltsverzeichnis
Programmbeschreibung
Dieses Applet zeichnet den Verlauf und berechnet die Periodendauer $T_0$ der periodischen Funktion
- $$x(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)+A_2\cdot \cos\left(2\pi f_2\cdot t- \varphi_2\right).$$
Bitte beachten Sie:
- Die Phasen $\varphi_i$ sind hier im Bogenmaß einzusetzen. Umrechnung aus dem Eingabewert: $\varphi_i \text{[im Bogenmaß]} =\varphi_i \text{[in Grad]}/360 \cdot 2\pi$.
- Ausgegeben werden auch der Maximalwert $x_{\rm max}$ und ein Signalwert $x(t_*)$ zu einer vorgebbaren Zeit $t_*$.
- Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung. Die englische Beschreibung finden Sie unter Period Duration of Periodic Signals.
Theoretischer Hintergrund
- Ein periodisches Signal $x(t)$ liegt genau dann vor, wenn dieses nicht konstant ist und für alle beliebigen Werte von $t$ und alle ganzzahligen Werte von $i$ mit einem geeigneten $T_{0}$ gilt: $x(t+i\cdot T_{0}) = x(t)$. Man bezeichnet $T_0$ als die Periodendauer und $f_0 = 1/T_0$ als die Grundfrequenz.
- Bei einer harmonischen Schwingung $x_1(t) = A_1\cdot \cos\left(2\pi f_1\cdot t- \varphi_1\right)$ gilt $f_0 = f_1$ und $T_0 = 1/f_1$, unabhängig von der Phase $\varphi_1$ und der Amplitude $A_1 \ne 0$.
$\text{Berechnungsvorschrift:}$ Setzt sich das periodisches Signal $x(t)$ wie in diesem Applet aus zwei Anteilen $x_1(t)$ und $x_2(t)$ zusammen, dann gilt mit $A_1 \ne 0$, $f_1 \ne 0$, $A_2 \ne 0$, $f_2 \ne 0$ für Grundfrequenz und Periodendauer:
- $$f_0 = {\rm ggT}(f_1, \ f_2) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}T_0 = 1/f_0,$$
wobei „ggT” den größten gemeinsamen Teiler bezeichnet.
$\text{Beispiele:}$ Im Folgenden bezeichnen $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierten Signalfrequenzen:
(a) $f_1' = 1.0$, $f_2' = 3.0$ ⇒ $f_0' = {\rm ggt}(1.0, \ 3.0) = 1.0$ ⇒ $T_0 = 1.0\ \rm ms$;
(b) $f_1' = 1.0$, $f_2' = 3.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 3.5)= 0.5$ ⇒ $T_0 = 2.0\ \rm ms$;
(c) $f_1' = 1.0$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(1.0, \ 2.5) = 0.5$ ⇒ $T_0 = 2.0\ \rm ms$;
(d) $f_1' = 0.9$, $f_2' = 2.5$ ⇒ $f_0' = {\rm ggt}(0.9, \ 2.5) = 0.1$ ⇒ $T_0 = 10.0 \ \rm ms$;
(e) $f_2' = \sqrt{2} \cdot f_1' $ ⇒ $f_0' = {\rm ggt}(f_1', \ f_2') \to 0$ ⇒ $T_0 \to \infty$ ⇒ Das Signal $x(t)$ ist nicht periodisch.
$\text{Anmerkung:}$ Die Periodendauer könnte auch als kleinstes gemeinsame Vielfache (kgV) entsprechend $T_0 = {\rm kgV}(T_1, \ T_2)$ ermittelt werden:
(c) $T_1 = 1.0\ \rm ms$, $T_2 = 0.4\ \rm kHz$ ⇒ $T_0 = {\rm kgV}(1.0, \ 0.4) \ \rm ms = 2.0\ \rm ms$
Bei allen anderen Parameterwerten würde es aber zu numerischen Problemen kommen, zum Beispiel
(a) $T_1 = 1.0\ \rm ms$ und $T_2 = 0.333\text{...} \ \rm ms$ besitzen aufgrund der begrenzten Darstellung reeller Zahlen kein kleinstes gemeinsames Vielfaches.
Vorschlag für die Versuchsdurchführung
Im Folgenden bezeichnen $A_1'$ und $A_2'$ die auf $1\ \rm V$ normierten Signalamplituden und $f_0'$, $f_1'$ und $f_2'$ die auf $1\ \rm kHz$ normierte Frequenzen:
(1) nach Voreinstellung: $A_1' = 1.0, \ A_2' = 0.5, \ f_1' = 2.0, \ A_2' = 2.5, \ \varphi_1 = 0^\circ \ \varphi_2 = 90^\circ\text{:}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 2.0 \ \rm ms$ wegen ${\rm ggt}(2.0, 2.5) = 0.5$.
(2) Variieren Sie bei der bestehenden Einstellung $\varphi_1$ und $\varphi_2$ im gesamten möglichen Bereich $\pm 180^\circ\text{:}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ bleibt erhalten.
(3) Wählen Sie die Voreinstellung ⇒ „Recall Parameters” und variieren Sie $A_1'$ im gesamten möglichen Bereich $0 \le A_1' \le 1\text{:}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer $T_0 = 2.0 \ \rm ms$ bleibt erhalten mit Ausnahme von $A_1' =0$. In diesem Fall ist $T_0 = 0.4 \ \rm ms$.
(4) Wählen Sie die Voreinstellung ⇒ „Recall Parameters” und ändern Sie $f_2' = 0.2\text{:}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$ wegen ${\rm ggt}(2.0, 0.2) = 0.2$.
(5) Wählen Sie die Voreinstellung ⇒ „Recall Parameters” und ändern Sie $f_1' = 0.2$. Speichern Sie diese Einstellung mit „Store Parameters”:
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 10.0 \ \rm ms$ wegen ${\rm ggt}(0.2, 2.5) = 0.1$.
(6) Wählen Sie die letzte Einstellung ⇒ „Recall Parameters” und ändern Sie $f_2' = 0.6$. Speichern Sie diese Einstellung mit „Store Parameters”:
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Die Periodendauer ist $T_0 = 5.0 \ \rm ms$ wegen ${\rm ggt}(0.2,0.6) = 0.2$.
(7) Wie groß ist bei gleicher Einstellung der maximale Signalwert $x_{\rm max}\text{?}$
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist $x_{\rm max} =x(t_* + i \cdot T_0) = 1.39 \ \rm V$ mit $t_* = $
(8) Wählen Sie die letzte Einstellung ⇒ „Recall Parameters” und ändern Sie $\varphi_2 = 0^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Cosinusschwingungen:
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun mit $x_{\rm max} = 1.5 \ \rm V$, also gleich $A_1 + A_2$.
(9) Wählen Sie die vorletzte Einstellung ⇒ „Recall Parameters” und ändern Sie $\varphi_1 = 90^\circ \hspace{0.1cm}\Rightarrow\hspace{0.1cm}$ Summe zweier Sinusschwingungen:
$\hspace{1.0cm}\Rightarrow\hspace{0.3cm}$Der maximale Signalwert ist nun mit $x_{\rm max} = 1.08 \ \rm V$, also ungleich $A_1 + A_2$.
Zur Handhabung der Applet-Variante 1
(A) Parametereingabe per Slider
(B) Bereich der graphischen Darstellung
(C) Variationsmöglichkeit für die graphische Darstellung
(D) Abspeichern und Zurückholen von Parametersätzen
(E) Numerikausgabe des Hauptergebnisses $T_0$; graphische Verdeutlichung durch rote Linie
(F) Ausgabe von $x_{\rm max}$ und der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
(G) Darstellung der Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$ durch grüne Punkte
(H) Einstellung der Zeit $t_*$ für die Signalwerte $x(t_*) = x(t_* + T_0)= x(t_* + 2T_0)$
Details zum obigen Punkt (C)
(*) Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)
(*) Verschieben mit „$\leftarrow$” (Ausschnitt nach links, Ordinate nach rechts), „$\uparrow$” „$\downarrow$” und „$\rightarrow$”
Andere Möglichkeiten:
(*) Gedrückte Shifttaste und Scrollen: Zoomen im Koordinatensystem,
(*) Gedrückte Shifttaste und linke Maustaste: Verschieben des Koordinatensystems.
Zur Handhabung der Applet-Variante 2
(A) Parametereingabe
(B) Bereich der graphischen Darstellung
(C) Größe der graphischen Darstellung
(D) Speichern/Zurückholen von Eingaben
(E) Numerikausgabe des Hauptergebnisses $T_0$;
in Grafik: blaue Linien im Abstand $T_0$
(F) Eingabe $t_\star$, Ausgabe von $x(t_*)$ und $x_{\rm max}$
Über die Autoren
Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.
- Die erste Version wurde 2004 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder ).
- 2017 wurde dieses Programm von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet ⇒ Applet-Variante 1.
- Parallel dazu erarbeitete Bastian Siebenwirth im Rahmen seiner Bachelorarbeit (Betreuer: Günter Söder) die HTML5-Variante 2.
Nochmalige Aufrufmöglichkeit der Applets in neuem Fenster
Wir bieten hier zwei Applets zur gleichen Thematik mit unterschiedlichem Layout an:
Applet-Variante 1 in neuem Tab öffnen Applet-Variante 2 in neuem Tab öffnen