Aufgaben:Aufgabe 3.09: Korrelationsempfänger für unipolare Signalisierung: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 3.9 Unipolarer Korrelationsempfänger nach 3.9 Korrelationsempfänger für unipolare Signalisierung) |
|||
Zeile 9: | Zeile 9: | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Die möglichen Sendesignale $s_i(t)$ – jeweils mit der Dauer $3T$ – sind alle rechteckförmig mit Ausnahme von $s_0(t) | + | Weiter gilt: |
+ | *Die möglichen Sendesignale $s_i(t)$ – jeweils mit der Dauer $3T$ – sind alle rechteckförmig mit Ausnahme von $s_0(t) \equiv 0$. | ||
+ | *Die Signale $s_1(t)$, $s_2(t)$, und $s_4(t)$ mit nur jeweils einer „$1$” besitzen die Signalenergie $E_{\rm B}$ (steht für „Energie pro Bit”), während zum Beispiel die Energie von $s_7(t)$ gleich $3E_{\rm B}$ beträgt. | ||
+ | |||
Der Korrelationsempfänger bildet aus dem verrauschten Empfangssignal $r(t) = s(t) + n(t)$ insgesamt $2^3 = 8$ Entscheidungsgrößen (Metriken) | Der Korrelationsempfänger bildet aus dem verrauschten Empfangssignal $r(t) = s(t) + n(t)$ insgesamt $2^3 = 8$ Entscheidungsgrößen (Metriken) | ||
Zeile 16: | Zeile 19: | ||
\hspace{0.3cm}( i = 0, ... , 7)$$ | \hspace{0.3cm}( i = 0, ... , 7)$$ | ||
− | und setzt die Sinkensymbolfolge $V = Q_j$, falls $W_j$ größer ist als alle anderen $W_{\ | + | und setzt die Sinkensymbolfolge $V = Q_j$, falls $W_j$ größer ist als alle anderen $W_{i \ne j}$. Damit trifft er eine optimale Entscheidung im Sinne von Maximum–Likelihood. |
+ | |||
+ | |||
+ | In der Tabelle sind die (unkorrigierten) Korrelationswerte $I_0, \ ... \ , I_7$ für drei verschiedene Systeme angegeben, die sich hinsichtlich der Störungen $n(t)$ unterscheiden und mit <b>A</b>, <b>B</b> oder <b>C</b> bezeichnet werden. | ||
+ | *Eine dieser Spalten steht für „keine Störung”, | ||
+ | *eine für „geringe Störungen” und | ||
+ | *eine weitere für „starke Störungen”. | ||
+ | Zur Bestimmung der Metriken für die drei Systemvarianten wurde stets die gleiche Quellensymbolfolge gesendet. | ||
+ | |||
+ | |||
− | + | ''Hinweise:'' | |
+ | *Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Optimale_Empf%C3%A4ngerstrategien|Optimale Empfängerstrategien]]. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | |||
− | |||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Bei welchem System gibt es keine Störungen $n(t)$ | + | {Bei welchem System gibt es keine Störungen $n(t)$? Bei |
|type="[]"} | |type="[]"} | ||
− | - System A, | + | - $\rm System \ A$, |
− | + System B, | + | + $\rm System \ B$, |
− | - System C. | + | - $\rm System \ C$. |
{Welche Quellensymbolfolge $Q_k ∈ {Q_0, \ ... \ , Q_7}$ wurde tatsächtlich gesendet? | {Welche Quellensymbolfolge $Q_k ∈ {Q_0, \ ... \ , Q_7}$ wurde tatsächtlich gesendet? | ||
|type="{}"} | |type="{}"} | ||
− | $k$ | + | $k \ = \ $ { 2 } |
− | {Welcher Entscheidungswert $W_j$ ist | + | {Welcher Entscheidungswert $W_j$ ist bei System A am größten? |
|type="{}"} | |type="{}"} | ||
− | ${\rm System \ A} \text{:} \hspace{0.2cm} j$ | + | ${\rm System \ A} \text{:} \hspace{0.2cm} j \ = \ $ { 2 } |
− | {Welcher Entscheidungswert $W_j$ ist beim System | + | {Welcher Entscheidungswert $W_j$ ist beim System C am größten? |
|type="{}"} | |type="{}"} | ||
− | ${\rm System \ C} \text{:} \hspace{0.2cm} j$ | + | ${\rm System \ C} \text{:} \hspace{0.2cm} j \ = \ $ { 6 } |
− | {Bei welchem System | + | {Bei welchem System treten die größten Störungen auf? Bei |
|type="()"} | |type="()"} | ||
− | - System A, | + | - $\rm System \ A$, |
− | - System B, | + | - $\rm System \ B$, |
− | + System C. | + | + $\rm System \ C$. |
{Welche Aussagen gelten unter der Annahme, dass $Q_2$ gesendet wurde und der Korrelationsempfänger sich normalerweise auch für $Q_2$ entscheidet? | {Welche Aussagen gelten unter der Annahme, dass $Q_2$ gesendet wurde und der Korrelationsempfänger sich normalerweise auch für $Q_2$ entscheidet? | ||
|type="[]"} | |type="[]"} | ||
− | + Die Differenz zwischen $W_2$ und dem nächstgrößten Wert $W_{\ | + | + Die Differenz zwischen $W_2$ und dem nächstgrößten Wert $W_{i \ne 2}$ ist um so kleiner, je stärker die Störungen sind. |
- Wenn es zu einer Verfälschung kommt, dann entscheidet sich der Empfänger am wahrscheinlichsten für die Symbolfolge $Q_6$. | - Wenn es zu einer Verfälschung kommt, dann entscheidet sich der Empfänger am wahrscheinlichsten für die Symbolfolge $Q_6$. | ||
+ Die Wahrscheinlichkeiten für fehlerhafte Entscheidungen zugunsten von $Q_0$, $Q_3$ bzw. $Q_6$ sind gleich. | + Die Wahrscheinlichkeiten für fehlerhafte Entscheidungen zugunsten von $Q_0$, $Q_3$ bzw. $Q_6$ sind gleich. |
Version vom 3. November 2017, 12:06 Uhr
Betrachtet wird die gemeinsame Entscheidung von $N = 3$ Binärsymbolen (Bit) mittels des Korrelationsempfängers. Die $M = 8$ möglichen Quellensymbolfolgen $Q_i$ besitzen alle die gleiche Wahrscheinlichkeit und sie sind durch die folgenden unipolaren Amplitudenkoeffizienten festgelegt:
- $$Q_0 = 000, \hspace{0.15cm}Q_1 = 001,\hspace{0.15cm}Q_2 = 010,\hspace{0.15cm}Q_3 = 011 \hspace{0.05cm},$$
- $$Q_4 = 100, \hspace{0.15cm}Q_5 = 101,\hspace{0.15cm}Q_6 = 110,\hspace{0.15cm}Q_7 = 111 \hspace{0.05cm}.$$
Weiter gilt:
- Die möglichen Sendesignale $s_i(t)$ – jeweils mit der Dauer $3T$ – sind alle rechteckförmig mit Ausnahme von $s_0(t) \equiv 0$.
- Die Signale $s_1(t)$, $s_2(t)$, und $s_4(t)$ mit nur jeweils einer „$1$” besitzen die Signalenergie $E_{\rm B}$ (steht für „Energie pro Bit”), während zum Beispiel die Energie von $s_7(t)$ gleich $3E_{\rm B}$ beträgt.
Der Korrelationsempfänger bildet aus dem verrauschten Empfangssignal $r(t) = s(t) + n(t)$ insgesamt $2^3 = 8$ Entscheidungsgrößen (Metriken)
- $$W_i = I_i - {E_i}/{2 }\hspace{0.3cm}{\rm mit}\hspace{0.3cm} I_i =\int_{0}^{3T} r(t) \cdot s_i(t) \,{\rm d} t \hspace{0.3cm}( i = 0, ... , 7)$$
und setzt die Sinkensymbolfolge $V = Q_j$, falls $W_j$ größer ist als alle anderen $W_{i \ne j}$. Damit trifft er eine optimale Entscheidung im Sinne von Maximum–Likelihood.
In der Tabelle sind die (unkorrigierten) Korrelationswerte $I_0, \ ... \ , I_7$ für drei verschiedene Systeme angegeben, die sich hinsichtlich der Störungen $n(t)$ unterscheiden und mit A, B oder C bezeichnet werden.
- Eine dieser Spalten steht für „keine Störung”,
- eine für „geringe Störungen” und
- eine weitere für „starke Störungen”.
Zur Bestimmung der Metriken für die drei Systemvarianten wurde stets die gleiche Quellensymbolfolge gesendet.
Hinweise:
- Die Aufgabe gehört zum Kapitel Optimale Empfängerstrategien.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(2) Beim System B ergeben sich folgende Entscheidungswerte $W_i = I_i \ – E_i/2$, jeweils normiert auf $E_{\rm B}$:
- $$W_0 = 0 - 0 = 0, \hspace{0.2cm}W_1 = 0 - 0.5 = -0.5 \hspace{0.05cm},$$
- $$W_2 = 1 - 0.5 = 0.5, \hspace{0.2cm}W_3 = 1 - 1 = 0 \hspace{0.05cm},$$
- $$W_4 = 0 - 0.5 = -0.5, \hspace{0.2cm}W_5 = 0 - 1 = -1 \hspace{0.05cm}.$$
- $$W_6 = 1 - 1 = 0, \hspace{0.2cm}W_7 = 1 - 1.5 = -0.5 \hspace{0.05cm}.$$
Der maximale Wert $W_2 = 0.5$ ⇒ $i = 2$. Der Korrelationsempfänger entscheidet sich also für $V = Q_2$. Da keine Störungen auftreten, wurde tatsächtlich auch $Q_2 = „010”$ gesendet ⇒ $k \ \underline {= 2}$.
(3) Für die Entscheidungswerte von System A gilt:
- $$W_0 = 0.00 - 0.00 = 0.00, \hspace{0.2cm}W_1 = -0.07 - 0.50 = -0.57, $$
- $$W_2 = 1.13 - 0.50 = 0.63, \hspace{0.2cm}W_3 = 1.06 - 1.00 = 0.06 \hspace{0.05cm},$$
- $$W_4 = 0.05 - 0.50 = -0.45, \hspace{0.2cm}W_5 = -0.02 - 1.00 = -1.02 \hspace{0.05cm},$$
- $$W_6 = 1.18 - 1.00 = 0.18, \hspace{0.2cm}W_7 = 1.11 - 1.50 = -0.39 \hspace{0.05cm}.$$
Das Maximum ist $W_j = W_2$ ⇒ $j \ \underline {= 2}$. Das heißt, dass der Korrelationsempfänger auch bei System A die richtige Entscheidung $V = Q_2$ trifft. Ohne den Korrekturterm ($– E_i/2$) hätte der Empfänger allerdings die falsche Entscheidung $V = Q_6$ getroffen.
(4) Der Korrelationsempfänger C hat folgende Werte zu vergleichen:
- $$W_0 = 0.00 - 0.00 = 0.00, \hspace{0.2cm}W_1 = -1.31 - 0.50 = -1.81 \hspace{0.05cm},$$
- $$W_2 = 3.59 - 0.50 = 3.09, \hspace{0.2cm}W_3 = 2.28 - 1.00 = 1.28 \hspace{0.05cm},$$
- $$W_4 = 0.97 - 0.50 = 0.47, \hspace{0.2cm}W_5 = -0.34 - 1.00 = -1.34 \hspace{0.05cm},$$
- $$W_6 = 4.56 - 1.00 = 3.56, \hspace{0.2cm}W_7 = 3.25 - 1.50 = 1.75 \hspace{0.05cm}.$$
Die Maximierung ergibt hier $\underline {j = 6}$ ⇒ $V = Q_6$. Da aber $Q_2$ gesendet wurde, entscheidet hier der Korrelationsempfänger falsch. Die Störungen sind zu stark.
(5) Die Störungen sind bei System C am größten und für die aktuellen Empfangswerte sogar so groß, dass der Korrelationsempfänger eine Fehlentscheidung trifft.
(6) Die erste Aussage ist richtig. Im fehlerfreien Fall ist die Differenz zwischen $W_2 = 0.5$ und den nächstgrößten Werten $W_0 = W_3 = W_6 = 0$ jeweils gleich $0.5$. Bei System B (leichte Störungen) ist die Differenz zwischen $W_2 = 0.63$ und dem nächstgrößeren Wert $W_6 = 0.18$ immerhin noch $D_{\rm min} = 0.45$. Erhöht man die Rauschleistung um den Faktor 50, so entscheidet der Korrelationsempfänger immer noch richtig, doch ist dann die minimale Differenz $D_{\rm min} = 0.16$ deutlich kleiner.
Für das System C, bei dem der Korrelationsempfänger überfordert ist (siehe Teilaufgabe (4)), wurde eine gegenüber dem System A um den Faktor 400 größere Rauschleistung zugrundegelegt.
Entscheidet der Korrelationsempfänger die gesendete Folge $Q_2$ falsch, so ist eine Verfälschung zu den Folgen $Q_0$, $Q_3$ bzw. $Q_6$ am wahrscheinlichsten, da sich alle diese drei Folgen von $Q_2$ nur jeweils in einem Bit unterscheiden. Dass bei der beschriebenen Simulation $W_6$ stets größer ist als $W_0$ bzw. $W_3$, ist „Zufall” und sollte nicht überinterpretiert werden. Richtig sind also die Aussagen 1 und 3.