Aufgaben:Aufgabe 2.1: AKF und LDS nach Codierung: Unterschied zwischen den Versionen
Zeile 7: | Zeile 7: | ||
[[Datei:P_ID1308__Dig_A_2_1.png|right|frame|Leistungsdichtespektrum bei Codierung]] | [[Datei:P_ID1308__Dig_A_2_1.png|right|frame|Leistungsdichtespektrum bei Codierung]] | ||
− | Wir betrachten das Digitalsignal | + | Wir betrachten das Digitalsignal $s(t)$, wobei wir folgende Beschreibungsgrößen verwenden: |
− | |||
− | wobei wir folgende Beschreibungsgrößen verwenden: | ||
*$a_{\nu}$ sind die Amplitudenkoeffizienten, | *$a_{\nu}$ sind die Amplitudenkoeffizienten, | ||
*$g_{s}(t)$ gibt den Sendegrundimpuls an, | *$g_{s}(t)$ gibt den Sendegrundimpuls an, | ||
Zeile 15: | Zeile 13: | ||
+ | Dann gilt: | ||
+ | :$$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$ | ||
Zur Charakterisierung der spektralen Eigenschaften, die sich aufgrund der Codierung und der Impulsformung ergeben, verwendet man unter anderem | Zur Charakterisierung der spektralen Eigenschaften, die sich aufgrund der Codierung und der Impulsformung ergeben, verwendet man unter anderem | ||
*die Autokorrelationsfunktion (AKF) | *die Autokorrelationsfunktion (AKF) | ||
Zeile 21: | Zeile 21: | ||
:$${\it \Phi}_s(f) = {1}/{T} \cdot {\it \Phi}_a(f) \cdot {\it \Phi}^{^{\bullet}}_{gs}(f) \hspace{0.05cm}.$$ | :$${\it \Phi}_s(f) = {1}/{T} \cdot {\it \Phi}_a(f) \cdot {\it \Phi}^{^{\bullet}}_{gs}(f) \hspace{0.05cm}.$$ | ||
− | Hierbei bezeichnet $\varphi_{a}(\lambda)$ die diskrete Autokorrelationsfunktion der Amplitudenkoeffizienten, die mit der spektralen Leistungsdichte $\ | + | Hierbei bezeichnet $\varphi_{a}(\lambda)$ die diskrete Autokorrelationsfunktion der Amplitudenkoeffizienten, die mit der spektralen Leistungsdichte ${\it \Phi}_{a}(f)$ über die Fouriertransformation zusammenhängt. Für diese gilt somit: |
:$${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} \hspace{0.05cm}.$$ | :$${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} \hspace{0.05cm}.$$ | ||
Weiterhin sind in obigen Gleichungen die Energie–AKF und das Energiespektrum verwendet: | Weiterhin sind in obigen Gleichungen die Energie–AKF und das Energiespektrum verwendet: | ||
Zeile 28: | Zeile 28: | ||
:$${\it \Phi}_a(f) = {1}/{2} - {1}/{2} \cdot \cos (4 \pi f \hspace{0.02cm} T)\hspace{0.05cm}.$$ | :$${\it \Phi}_a(f) = {1}/{2} - {1}/{2} \cdot \cos (4 \pi f \hspace{0.02cm} T)\hspace{0.05cm}.$$ | ||
Für den Sendegrundimpuls werden folgende Annahmen getroffen: | Für den Sendegrundimpuls werden folgende Annahmen getroffen: | ||
− | * | + | *In der Teilfrage (2) sei $g_{s}(t)$ ein NRZ–Rechteckimpuls, so dass eine dreieckförmige Energie–AKF vorliegt, die auf den Bereich $|\tau| ≤ T$ beschränkt ist. Das Maximum ist dabei |
:$$\varphi^{^{\bullet}}_{gs}(\tau = 0) = s_0^2 \cdot T \hspace{0.05cm}.$$ | :$$\varphi^{^{\bullet}}_{gs}(\tau = 0) = s_0^2 \cdot T \hspace{0.05cm}.$$ | ||
*Für die Teilaufgabe (3) soll von einer Wurzel–Nyquist–Charakteristik mit Rolloff–Faktor $r = 0$ ausgegangen werden. In diesem Fall gilt: | *Für die Teilaufgabe (3) soll von einer Wurzel–Nyquist–Charakteristik mit Rolloff–Faktor $r = 0$ ausgegangen werden. In diesem Fall gilt: | ||
Zeile 35: | Zeile 35: | ||
− | '' | + | ''Hinweise:'' |
− | + | *Die Aufgabe gehört zum Kapitel [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]]. | |
− | Die Aufgabe gehört zum [[Digitalsignalübertragung/Grundlagen_der_codierten_Übertragung|Grundlagen der codierten Übertragung]] des | + | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. |
+ | *Berücksichtigen Sie, dass die Sendeleistung $P_{\rm S}$ gleich der AKF $\varphi_{s}(\tau)$ an der Stelle $\tau = 0$ ist, aber auch als Integral über das LDS $\Phi_{s}(f)$ berechnet werden kann. | ||
===Fragebogen=== | ===Fragebogen=== | ||
Zeile 49: | Zeile 50: | ||
$\varphi_{a}(\lambda = 2) \ = \ $ { -0.2575--02425 } | $\varphi_{a}(\lambda = 2) \ = \ $ { -0.2575--02425 } | ||
− | {Welche Sendeleistung ergibt sich mit dem NRZ–Sendegrundimpuls? | + | {Welche Sendeleistung ergibt sich mit dem '''NRZ–Sendegrundimpuls'''? |
|type="{}"} | |type="{}"} | ||
− | + | $P_{\rm S} \ = \ $ { 5 3% } $ \ \rm mW$ | |
− | {Wie groß ist die Sendeleistung bei Wurzel–Nyquist–Charakteristik $(r = 0)$? | + | {Wie groß ist die Sendeleistung bei '''Wurzel–Nyquist–Charakteristik''' $(r = 0)$? |
|type="{}"} | |type="{}"} | ||
− | + | $P_{\rm S} \ = \ $ { 5 3% } $ \ \rm mW$ | |
Version vom 16. November 2017, 15:45 Uhr
Wir betrachten das Digitalsignal $s(t)$, wobei wir folgende Beschreibungsgrößen verwenden:
- $a_{\nu}$ sind die Amplitudenkoeffizienten,
- $g_{s}(t)$ gibt den Sendegrundimpuls an,
- $T$ ist die Symboldauer (Abstand der Impulse).
Dann gilt:
- $$s(t) = \sum_{\nu = -\infty}^{+\infty} a_\nu \cdot g_s ( t - \nu \cdot T) \hspace{0.05cm}.$$
Zur Charakterisierung der spektralen Eigenschaften, die sich aufgrund der Codierung und der Impulsformung ergeben, verwendet man unter anderem
- die Autokorrelationsfunktion (AKF)
- $$\varphi_s(\tau) = \sum_{\lambda = -\infty}^{+\infty}{1}/{T} \cdot \varphi_a(\lambda)\cdot \varphi^{^{\bullet}}_{gs}(\tau - \lambda \cdot T)\hspace{0.05cm},$$
- das Leistungsdichtespektrum (LDS)
- $${\it \Phi}_s(f) = {1}/{T} \cdot {\it \Phi}_a(f) \cdot {\it \Phi}^{^{\bullet}}_{gs}(f) \hspace{0.05cm}.$$
Hierbei bezeichnet $\varphi_{a}(\lambda)$ die diskrete Autokorrelationsfunktion der Amplitudenkoeffizienten, die mit der spektralen Leistungsdichte ${\it \Phi}_{a}(f)$ über die Fouriertransformation zusammenhängt. Für diese gilt somit:
- $${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} \hspace{0.05cm}.$$
Weiterhin sind in obigen Gleichungen die Energie–AKF und das Energiespektrum verwendet:
- $$\varphi^{^{\bullet}}_{gs}(\tau) = \int_{-\infty}^{+\infty} g_s ( t ) \cdot g_s ( t + \tau)\,{\rm d} t \hspace{0.4cm}\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet \hspace{0.4cm} {\it \Phi}^{^{\bullet}}_{gs}(f) = |G_s(f)|^2 \hspace{0.05cm}.$$
In der vorliegenden Aufgabe soll für die spektrale Leistungsdichte der Amplitudenkoeffizienten folgender Funktionsverlauf angenommen werden (siehe Grafik):
- $${\it \Phi}_a(f) = {1}/{2} - {1}/{2} \cdot \cos (4 \pi f \hspace{0.02cm} T)\hspace{0.05cm}.$$
Für den Sendegrundimpuls werden folgende Annahmen getroffen:
- In der Teilfrage (2) sei $g_{s}(t)$ ein NRZ–Rechteckimpuls, so dass eine dreieckförmige Energie–AKF vorliegt, die auf den Bereich $|\tau| ≤ T$ beschränkt ist. Das Maximum ist dabei
- $$\varphi^{^{\bullet}}_{gs}(\tau = 0) = s_0^2 \cdot T \hspace{0.05cm}.$$
- Für die Teilaufgabe (3) soll von einer Wurzel–Nyquist–Charakteristik mit Rolloff–Faktor $r = 0$ ausgegangen werden. In diesem Fall gilt:
- $$|G_s(f)|^2 = \left\{ \begin{array}{c} s_0^2 \cdot T^2 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array} \begin{array}{*{20}c} |f| < {1}/({2T}) \hspace{0.05cm}, \\ |f| > {1}/({2T}) \hspace{0.05cm}.\\ \end{array}$$
- Für numerische Berechnungen ist stets $s_{0}^{2} = 10 \ \rm mW$ zu verwenden.
Hinweise:
- Die Aufgabe gehört zum Kapitel Grundlagen der codierten Übertragung.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Berücksichtigen Sie, dass die Sendeleistung $P_{\rm S}$ gleich der AKF $\varphi_{s}(\tau)$ an der Stelle $\tau = 0$ ist, aber auch als Integral über das LDS $\Phi_{s}(f)$ berechnet werden kann.
Fragebogen
Musterlösung
- $${\it \Phi}_a(f) = \sum_{\lambda = -\infty}^{+\infty}\varphi_a(\lambda)\cdot {\rm e}^{- {\rm j}\hspace{0.05cm} 2 \pi f \hspace{0.02cm} \lambda T} = \varphi_a(0) + \sum_{\lambda = 1}^{\infty}2 \cdot \varphi_a(\lambda)\cdot\cos ( 2 \pi f \hspace{0.02cm} \lambda T) \hspace{0.05cm}.$$
Durch Vergleich mit der skizzierten Funktion
- $${\it \Phi}_a(f) = {1}/{2} - {1}/{2} \cdot \cos (4 \pi f \hspace{0.02cm} T)\hspace{0.05cm}.$$
erhält man:
- $${\it \varphi}_a(\lambda = 0)\hspace{0.15cm}\underline { = 0.5}, \hspace{0.2cm} {\it \varphi}_a(\lambda = 2) = {\it \varphi}_a(\lambda = -2) \hspace{0.15cm}\underline {= -0.25} \hspace{0.05cm}.$$
Alle anderen AKF–Werte – also auch $\varphi_{a}(\lambda = ±1)$ – ergeben sich zu $0$.
(2) Für den rechteckförmigen NRZ–Grundimpuls ergibt sich aufgrund der Begrenzung der Energie–AKF auf den Bereich $|\tau| ≤ T$:
- $$P_{\rm S} = \varphi_s(\tau = 0) = \frac{1}{T} \cdot \varphi_a(\lambda = 0)\cdot \varphi^{^{\bullet}}_{gs}(\tau = 0)= \frac{1}{T} \cdot \frac{1}{2} \cdot s_0^2 \cdot T = \frac{s_0^2}{2} \hspace{0.15cm}\underline {= 5\,\,{\rm mW}}\hspace{0.05cm}.$$
(3) Im hier zu betrachtenden Fall (rechteckförmige Spektralfunktion) ist es günstiger, die Sendeleistung durch Integration über das Leistungsdichtespektrum zu berechnen:
- $$P_{\rm S} = \ \int_{-1/(2T)}^{+1/(2T)} {\it \Phi}_s(f) \,{\rm d} f = \frac{1}{T} \cdot \int_{-1/(2T)}^{+1/(2T)} {\it \Phi}_a(f) \cdot {\it \Phi}^{^{\bullet}}_{gs}(f) \,{\rm d} f =$$
- $$\hspace{0.6cm}= \ \frac{1}{T} \cdot \left [ s_0^2 \cdot T^2 \right ] \cdot \int_{-1/(2T)}^{+1/(2T)} \left( {1}/{2} - {1}/{2} \cdot \cos (4 \pi f \hspace{0.02cm} T)\right ) \,{\rm d} f\hspace{0.05cm} = {s_0^2}/{2}\hspace{0.15cm}\underline { = 5\,\,{\rm mW}} .$$
Hierbei ist berücksichtigt, dass für diese Aufgabe das Energie–LDS $|G_{s}(f)|^{2}$ als konstant vorgegeben ist (innerhalb des Integrationsintervalls) und somit vor das Integral gezogen werden kann. Trotz völlig anderer Signalform $s(t)$ ergibt sich hier die gleiche Sendeleistung, da das Integral den Wert $1/(2T)$ liefert. Anzumerken ist, dass diese einfache Rechnung nur für den Rolloff-Faktor $r = 0$ möglich ist.