Aufgaben:Aufgabe 1.16Z: Schranken für die Gaußsche Fehlerfunktion: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Schranken für die Blockfehlerwahrscheinlichkeit }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Mul…“)
 
Zeile 5: Zeile 5:
 
}}
 
}}
  
[[Datei:|right|]]
+
[[Datei:P_ID2415__KC_A_1_15.png|right|farme|Q(<i>x</i>) und verwandte Funktionen]]
 +
 
 +
Die Wahrscheinlichkeit, dass eine Gaußsche Zufallsgröße ''n'' mit Streuung $\sigma$ → Varianz $\sigma^2$ betragsmäßig größer ist als ein Wert ''A'', ist gleich
 +
 
 +
:$${\rm Pr}(n > A) = {\rm Pr}(n < -A) ={\rm Q}(A/\sigma) \hspace{0.05cm}.$$
 +
 +
Hierbei verwendet ist eine der wichtigsten Funktionen für die Nachrichtentechnik (in der Grafik rot eingezeichnet): [[Stochastische_Signaltheorie/Gaußverteilte_Zufallsgrößen#.C3.9Cberschreitungswahrscheinlichkeit|die Komplementäre Gaußsche Fehlerfunktion]]
 +
 
 +
:$$\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int\limits_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$
 +
 +
${\rm Q}(x)$ ist eine monoton fallende Funktion mit ${\rm Q}(0) = 0.5$. Für große Werte von ''x'' tendiert ${\rm Q}(x)$ gegen Null.
 +
 
 +
Das Integral der Q–Funktion ist analytisch nicht lösbar und wird meist in Tabellenform angegeben. Aus der Literatur bekannt sind aber handhabbare Näherungslösungen bzw. Schranken für positive ''x''–Werte:
 +
 
 +
*die obere Schranke (obere blaue Kurve in nebenstehender Grafik, nur gültig für $x > 0$):
 +
 +
:$$ \rm Q_o(\it x)=\frac{\rm 1}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-\it x^{\rm 2}/\rm 2}\hspace{0.15cm} \ge \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm},$$
 +
 
 +
*die untere Schranke (untere blaue Kurve in der Grafik, nur gültig für $x > 1$):
 +
 +
:$$ \rm Q_u(\it x)=\frac{\rm 1-{\rm 1}/{\it x^{\rm 2}}}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-\it x^{\rm 2}/\rm 2} \hspace{0.15cm} \le \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm},$$
 +
 
 +
*die Chernoff–Rubin–Schranke (grüne Kurve in der Grafik, gezeichnet für $K = 1$):
 +
 +
:$$\rm Q_{CR}(\it x)=K \cdot \rm e^{-\it x^{\rm 2}/\rm 2} \hspace{0.15cm} \ge \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm}.$$
 +
 
 +
In der Aufgabe ist zu untersuchen, in wie weit diese Schranken als Näherungen für ${\rm Q}(x)$ herangezogen werden können und welche Verfälschungen sich dadurch ergeben.
 +
 
 +
''Hinweis:''
 +
 
 +
Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit|Schranken für die Blockfehlerwahrscheinlichkeit]] dieses Buches sowie auf das Kapitel [[Kanalcodierung/Distanzeigenschaften_und_Fehlerwahrscheinlichkeitsschranken|Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken]] im Buch „Stochastische Signaltheorie”. Die Aufgabe bietet auch einige wichtige Hinweise zur Lösung der [[Aufgaben:1.16_Schranken_für_AWGN|Aufgabe 1.16]], in der die Funktion ${\rm Q}_{\rm CR}(x)$ zur Herleitung der [[Kanalcodierung/Schranken_für_die_Blockfehlerwahrscheinlichkeit#Die_obere_Schranke_nach_Bhattacharyya|Bhattacharyya–Schranke]] für den AWGN–Kanal benötigt wird. Weiter verweisen wir auf das folgende Interaktionsmodul:
 +
 
 +
Komplementäre Gaußsche Fehlerfunktion
  
  
Zeile 27: Zeile 59:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;
 
'''2.'''
 
'''2.'''
 
'''3.'''
 
'''3.'''

Version vom 14. Dezember 2017, 14:05 Uhr

Q(x) und verwandte Funktionen

Die Wahrscheinlichkeit, dass eine Gaußsche Zufallsgröße n mit Streuung $\sigma$ → Varianz $\sigma^2$ betragsmäßig größer ist als ein Wert A, ist gleich

$${\rm Pr}(n > A) = {\rm Pr}(n < -A) ={\rm Q}(A/\sigma) \hspace{0.05cm}.$$

Hierbei verwendet ist eine der wichtigsten Funktionen für die Nachrichtentechnik (in der Grafik rot eingezeichnet): die Komplementäre Gaußsche Fehlerfunktion

$$\rm Q (\it x) = \frac{\rm 1}{\sqrt{\rm 2\pi}}\int\limits_{\it x}^{+\infty}\rm e^{\it -u^{\rm 2}/\rm 2}\,d \it u \hspace{0.05cm}.$$

${\rm Q}(x)$ ist eine monoton fallende Funktion mit ${\rm Q}(0) = 0.5$. Für große Werte von x tendiert ${\rm Q}(x)$ gegen Null.

Das Integral der Q–Funktion ist analytisch nicht lösbar und wird meist in Tabellenform angegeben. Aus der Literatur bekannt sind aber handhabbare Näherungslösungen bzw. Schranken für positive x–Werte:

  • die obere Schranke (obere blaue Kurve in nebenstehender Grafik, nur gültig für $x > 0$):
$$ \rm Q_o(\it x)=\frac{\rm 1}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-\it x^{\rm 2}/\rm 2}\hspace{0.15cm} \ge \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm},$$
  • die untere Schranke (untere blaue Kurve in der Grafik, nur gültig für $x > 1$):
$$ \rm Q_u(\it x)=\frac{\rm 1-{\rm 1}/{\it x^{\rm 2}}}{\sqrt{\rm 2\pi}\cdot x}\cdot \rm e^{-\it x^{\rm 2}/\rm 2} \hspace{0.15cm} \le \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm},$$
  • die Chernoff–Rubin–Schranke (grüne Kurve in der Grafik, gezeichnet für $K = 1$):
$$\rm Q_{CR}(\it x)=K \cdot \rm e^{-\it x^{\rm 2}/\rm 2} \hspace{0.15cm} \ge \hspace{0.15cm} \rm Q (\it x) \hspace{0.05cm}.$$

In der Aufgabe ist zu untersuchen, in wie weit diese Schranken als Näherungen für ${\rm Q}(x)$ herangezogen werden können und welche Verfälschungen sich dadurch ergeben.

Hinweis:

Die Aufgabe bezieht sich auf das Kapitel Schranken für die Blockfehlerwahrscheinlichkeit dieses Buches sowie auf das Kapitel Distanzeigenschaften und Fehlerwahrscheinlichkeitsschranken im Buch „Stochastische Signaltheorie”. Die Aufgabe bietet auch einige wichtige Hinweise zur Lösung der Aufgabe 1.16, in der die Funktion ${\rm Q}_{\rm CR}(x)$ zur Herleitung der Bhattacharyya–Schranke für den AWGN–Kanal benötigt wird. Weiter verweisen wir auf das folgende Interaktionsmodul:

Komplementäre Gaußsche Fehlerfunktion


Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

(1)  2. 3. 4. 5. 6. 7.