Aufgaben:Aufgabe 3.4: Systematische Faltungscodes: Unterschied zwischen den Versionen
Wael (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multipl…“) |
|||
Zeile 1: | Zeile 1: | ||
− | {{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung | + | {{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}} |
+ | [[Datei:P_ID2629__KC_A_3_4.png|right|frame|Vorgegebene Filterstrukturen]] | ||
+ | Man spricht von einem systematischen Faltungscode der Rate $R = 1/2$ ⇒ $k = 1, \ n = 2$, wenn das Codebit $x_i^{(1)}$ gleich dem momentan anliegenden Informationsbit $u_i$ ist. | ||
+ | Die Übertragungsfunktionsmatrix eines solchen Codes lautet: | ||
+ | :$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) | ||
+ | \hspace{0.05cm}.$$ | ||
+ | Der in der oberen Grafik dargestellte <b>Coder A</b> ist sicher nicht systematisch, da für diesen $G^{(1)}(D) ≠ 1$ gilt. Zur Herleitung der Matrix $\mathbf{G}(D)$ verweisen wir auf ein [[früheres Beispiel]], in dem für unseren Standard–Rate–1/2–Coder mit Gedächtnis $m = 2$ ermittelt wurde: | ||
+ | :$${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} & = & \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) =\\ | ||
+ | & = & \hspace{-0.15cm} \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 + D^2 \hspace{0.05cm}\big ) | ||
+ | \hspace{0.05cm}.$$ | ||
+ | Der <b>Coder A</b> unterscheidet sich gegenüber diesem Beispiel nur durch Vertauschen der beiden Ausgänge. Lautet die Übertragungsfunktionsmatrix eines Codes | ||
+ | :$${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) | ||
+ | \hspace{0.05cm},$$ | ||
− | }} | + | so gilt für die äquivalente systematische Repräsentation dieses Rate–1/2–Faltungscodes allgemein: |
+ | :$${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big ) | ||
+ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | In der Teilaufgabe (3) ist zu prüfen, welcher der systematischen Anordnungen (entweder <b>Code B</b> oder <b>Code C</b> oder auch beide) äquivalent zum Code A ist. | ||
+ | |||
+ | ''Hinweis:'' | ||
+ | * Die Aufgabe bezieht sich auf die Thematik von [[Kapitel 3.2]]. | ||
− | |||
===Fragebogen=== | ===Fragebogen=== | ||
− | |||
<quiz display=simple> | <quiz display=simple> | ||
− | {Multiple-Choice | + | {Multiple-Choice |
|type="[]"} | |type="[]"} | ||
− | + | + correct | |
− | + | + | - false |
− | |||
{Input-Box Frage | {Input-Box Frage | ||
|type="{}"} | |type="{}"} | ||
− | $\ | + | $xyz \ = \ ${ 5.4 3% } $ab$ |
− | |||
− | |||
− | |||
</quiz> | </quiz> | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' |
− | '''2 | + | '''(2)''' |
− | '''3 | + | '''(3)''' |
− | '''4 | + | '''(4)''' |
− | '''5 | + | '''(5)''' |
− | |||
− | |||
{{ML-Fuß}} | {{ML-Fuß}} | ||
− | [[Category:Aufgaben zu Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung | + | [[Category:Aufgaben zu Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung^]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ^]] |
Version vom 30. November 2017, 10:02 Uhr
Man spricht von einem systematischen Faltungscode der Rate $R = 1/2$ ⇒ $k = 1, \ n = 2$, wenn das Codebit $x_i^{(1)}$ gleich dem momentan anliegenden Informationsbit $u_i$ ist.
Die Übertragungsfunktionsmatrix eines solchen Codes lautet:
- $${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
Der in der oberen Grafik dargestellte Coder A ist sicher nicht systematisch, da für diesen $G^{(1)}(D) ≠ 1$ gilt. Zur Herleitung der Matrix $\mathbf{G}(D)$ verweisen wir auf ein Früheres Beispiel, in dem für unseren Standard–Rate–1/2–Coder mit Gedächtnis $m = 2$ ermittelt wurde:
- $${\boldsymbol{\rm G}}(D) \hspace{-0.15cm} & = & \hspace{-0.15cm} \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) =\\ & = & \hspace{-0.15cm} \big ( \hspace{0.05cm} 1 + D + D^2\hspace{0.05cm} , \hspace{0.2cm} 1 + D^2 \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
Der Coder A unterscheidet sich gegenüber diesem Beispiel nur durch Vertauschen der beiden Ausgänge. Lautet die Übertragungsfunktionsmatrix eines Codes
- $${\boldsymbol{\rm G}}(D) = \big ( \hspace{0.05cm} G^{(1)}(D)\hspace{0.05cm} , \hspace{0.2cm} G^{(2)}(D) \hspace{0.05cm}\big ) \hspace{0.05cm},$$
so gilt für die äquivalente systematische Repräsentation dieses Rate–1/2–Faltungscodes allgemein:
- $${\boldsymbol{\rm G}}_{\rm sys}(D) = \big ( \hspace{0.05cm} 1\hspace{0.05cm} , \hspace{0.2cm} {G^{(2)}(D)}/{G^{(1)}(D)} \hspace{0.05cm}\big ) \hspace{0.05cm}.$$
In der Teilaufgabe (3) ist zu prüfen, welcher der systematischen Anordnungen (entweder Code B oder Code C oder auch beide) äquivalent zum Code A ist.
Hinweis:
- Die Aufgabe bezieht sich auf die Thematik von Kapitel 3.2.
Fragebogen
Musterlösung