Aufgaben:Aufgabe 4.08Z: Fehlerwahrscheinlichkeit bei drei Symbolen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Approximation der Fehlerwahrscheinlichkeit}}
  
[[Datei:P_ID2037__Dig_Z_4_8.png|right|frame|Entscheidungsregionen mit <i>M</i> = 3]]
+
[[Datei:P_ID2037__Dig_Z_4_8.png|right|frame|Entscheidungsregionen bei <i>M</i> = 3 Symbolen]]
Die Grafik zeigt die genau gleiche Signalraumkonstellation wie in der [[Aufgaben:4.8_Entscheidungsregionen| Aufgabe A4.8]]:
+
Die Grafik zeigt die genau gleiche Signalraumkonstellation wie in der [[Aufgaben:4.8_Entscheidungsregionen| Aufgabe 4.8]]:
 
* die $M = 3$ möglichen Sendesignale, nämlich
 
* die $M = 3$ möglichen Sendesignale, nämlich
 
:$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm}  
 
:$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm}  
Zeile 10: Zeile 10:
  
 
* die $M = 3$ Entscheidungsgrenzen
 
* die $M = 3$ Entscheidungsgrenzen
:$$G_{01}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
+
:$$G_{01}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
:$$   G_{02}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
+
:$$G_{02}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
:$$   G_{12}: y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$
+
:$$G_{12}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$
  
  
Zeile 31: Zeile 31:
 
Ein solches amplitudenbegrenztes Rauschen ist zwar ohne jede praktische Bedeutung. Es ermöglicht jedoch eine Fehlerwahrscheinlichkeitsberechnung ohne umfangreiche Integrale, aus der das Prinzip der Vorgehensweise erkennbar wird.
 
Ein solches amplitudenbegrenztes Rauschen ist zwar ohne jede praktische Bedeutung. Es ermöglicht jedoch eine Fehlerwahrscheinlichkeitsberechnung ohne umfangreiche Integrale, aus der das Prinzip der Vorgehensweise erkennbar wird.
  
''Hinweis:''
+
 
* Die Aufgabe gehört zum Themenkomplex des Kapitels [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]].
+
 
 +
''Hinweise:''
 +
* Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit| Approximation der Fehlerwahrscheinlichkeit]].  
 +
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 +
* Zur Vereinfachung der Schreibweise wird nachfolgend verwendet:
 +
:$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm}
 +
  y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$
  
  
Zeile 40: Zeile 46:
 
{Welchen Wert besitzt die Konstante $K$ für $A = 0.75$?
 
{Welchen Wert besitzt die Konstante $K$ für $A = 0.75$?
 
|type="{}"}
 
|type="{}"}
$\boldsymbol{K}$ = { 0.444 3% }
+
$\boldsymbol{K} \ = \ $ { 0.444 3% }
  
 
{Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit $A = 0.75$?
 
{Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit $A = 0.75$?
 
|type="{}"}
 
|type="{}"}
$A = 0.75 \text{:} \hspace{0.2cm} p_{\rm S}$ = { 0 3% }  
+
$p_{\rm S} \ = \ $ { 0. }  
  
 
{Welche Aussagen sind für $A = 1$ zutreffend?
 
{Welche Aussagen sind für $A = 1$ zutreffend?
 
|type="[]"}
 
|type="[]"}
 
- Alle Nachrichten $m_i$ werden in gleicher Weise verfälscht.
 
- Alle Nachrichten $m_i$ werden in gleicher Weise verfälscht.
+ Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_0)} = 1/64$.
+
+ Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_0) = 1/64$.
- Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_1)} = 0$.
+
- Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_1) = 0$.
+ Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler \ | \ \it m_2)} = 0$.
+
+ Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm}  {\it m}_2) = 0$.
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?
+
{Welche Fehlerwahrscheinlichkeit ergibt sich mit $A=1$ und ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?
 
|type="{}"}
 
|type="{}"}
$A = 1; \ {\rm alle \ 1/3} \text{:} \hspace{0.2cm} p_{\rm S}$ = { 1.04 3% } $\ \cdot 10^{\rm &ndash;2}$
+
$p_{\rm S} \ = \ $ { 1.04 3% } $\ \%$
  
{Welche Fehlerwahrscheinlichkeit ergibt sich mit ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4, {\rm Pr}(m_2) = 1/2$?
+
{Welche Fehlerwahrscheinlichkeit ergibt sich mit $A=1$ und ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4, {\rm Pr}(m_2) = 1/2$?
 
|type="{}"}
 
|type="{}"}
$A = 1; 1/4, 1/4, 1/2 \text{:} \hspace{0.2cm} p_{\rm S}$ = { 0.78 3% } $\ \cdot 10^{\rm &ndash;2}$
+
$p_{\rm S} \ = \ $ { 0.78 3% } $\ \%$
  
 
{Könnte man durch Festlegung anderer Regionen ein besseres Ergebnis erzielen?
 
{Könnte man durch Festlegung anderer Regionen ein besseres Ergebnis erzielen?
 
|type="()"}
 
|type="()"}
+ ja,
+
+ Ja.
- nein.
+
- Nein.
 
</quiz>
 
</quiz>
  

Version vom 20. November 2017, 16:27 Uhr

Entscheidungsregionen bei M = 3 Symbolen

Die Grafik zeigt die genau gleiche Signalraumkonstellation wie in der Aufgabe 4.8:

  • die $M = 3$ möglichen Sendesignale, nämlich
$$\boldsymbol{ s }_0 = (-1, \hspace{0.1cm}1)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_1 = (1, \hspace{0.1cm}2)\hspace{0.05cm}, \hspace{0.2cm} \boldsymbol{ s }_2 = (2, \hspace{0.1cm}-1)\hspace{0.05cm}.$$
  • die $M = 3$ Entscheidungsgrenzen
$$G_{01}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1.5 - 2 \cdot x\hspace{0.05cm},$$
$$G_{02}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} -0.75 +1.5 \cdot x\hspace{0.05cm},$$
$$G_{12}\text{:} \hspace{0.4cm} y \hspace{-0.1cm} \ = \ \hspace{-0.1cm} x/3\hspace{0.05cm}.$$


Die beiden Achsen des 2D–Signalraums sind hier vereinfachend mit $x$ und $y$ bezeichnet; eigentlich müsste hierfür $\varphi_1(t)/\sqrt {E}$ bzw. $\varphi_2(t)/\sqrt {E}$ geschrieben werden.

Diese Entscheidungsgrenzen sind optimal unter den Voraussetzungen

  • gleichwahrscheinliche Symbolwahrscheinlichkeiten
  • zirkulär–symmetrische WDF des Rauschens (z.B. AWGN).


In dieser Aufgabe betrachten wir dagegen für die Rausch–WDF eine zweidimensionale Gleichverteilung:

$$\boldsymbol{ p }_{\boldsymbol{ n }} (x,\hspace{0.15cm} y) = \left\{ \begin{array}{c} K\\ 0 \end{array} \right.\quad \begin{array}{*{1}c}{\rm f\ddot{u}r} \hspace{0.15cm}|x| <A, \hspace{0.15cm} |y| <A \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}.\\ \end{array}$$

Ein solches amplitudenbegrenztes Rauschen ist zwar ohne jede praktische Bedeutung. Es ermöglicht jedoch eine Fehlerwahrscheinlichkeitsberechnung ohne umfangreiche Integrale, aus der das Prinzip der Vorgehensweise erkennbar wird.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Approximation der Fehlerwahrscheinlichkeit.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Zur Vereinfachung der Schreibweise wird nachfolgend verwendet:
$$x = {\varphi_1(t)}/{\sqrt{E}}\hspace{0.05cm}, \hspace{0.2cm} y = {\varphi_2(t)}/{\sqrt{E}}\hspace{0.05cm}.$$


Fragebogen

1

Welchen Wert besitzt die Konstante $K$ für $A = 0.75$?

$\boldsymbol{K} \ = \ $

2

Welche Symbolfehlerwahrscheinlichkeit ergibt sich mit $A = 0.75$?

$p_{\rm S} \ = \ $

3

Welche Aussagen sind für $A = 1$ zutreffend?

Alle Nachrichten $m_i$ werden in gleicher Weise verfälscht.
Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_0) = 1/64$.
Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_1) = 0$.
Die bedingte Fehlerwahrscheinlichkeit ${\rm Pr(Fehler} \hspace{0.05cm} | \hspace{0.05cm} {\it m}_2) = 0$.

4

Welche Fehlerwahrscheinlichkeit ergibt sich mit $A=1$ und ${\rm Pr}(m_0) = {\rm Pr}(m_1) = {\rm Pr}(m_2) = 1/3$?

$p_{\rm S} \ = \ $

$\ \%$

5

Welche Fehlerwahrscheinlichkeit ergibt sich mit $A=1$ und ${\rm Pr}(m_0) = {\rm Pr}(m_1) = 1/4, {\rm Pr}(m_2) = 1/2$?

$p_{\rm S} \ = \ $

$\ \%$

6

Könnte man durch Festlegung anderer Regionen ein besseres Ergebnis erzielen?

Ja.
Nein.


Musterlösung

(1)  Das Volumen der 2D–WDF $p_n(x, y)$ muss $1$ ergeben, das heißt:

$$2A \cdot 2A \cdot K = 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} K = \frac{1}{4A^2}\hspace{0.05cm}.$$

Mit $A = 0.75$ ⇒ $2A = 3/2$ erhält man $K = 4/9 = \ \underline {0.444}$.


(2) 
Rauschgebiete mit A = 0.75
In nebenstehender Grafik ist die Rauschkomponente $\boldsymbol{n}$ durch die Quadrate der Kantenlänge $1.5$ um die 2D–Signalraumpunkte $\boldsymbol{s}_i$ eingezeichnet. Man erkennt, dass keine Entscheidungsgrenze durch Rauschkomponenten überschritten wird. Daraus folgt: Die Symbolfehlerwahrscheinlichkeit $p_{\rm S}$ ist unter den hier gegebenen Voraussetzungen identisch 0.


(3)  Richtig sind die Aussagen 2 und 4, wie aus der unteren Grafik abgelesen werden kann.

  • Die Nachricht $m_2$ kann nicht verfälscht werden, da das Quadrat um $\boldsymbol{s}_2$ vollständig im rechten unteren Quadranten und damit im Entscheidungsgebiet $I_2$ liegt.
  • Ebenso wurde mit Sicherheit $m_2$ gesendet, wenn der Empfangswert im Entscheidungsgebiet $I_2$ liegt. Der Grund: Keines der Quadrate um $\boldsymbol{s}_0$ und $\boldsymbol{s}_1$ reicht bis in das Gebiet $I_2$ hinein.
  • $m_0$ kann nur zu $m_1$ verfälscht werden. Die (bedingte) Verfälschungswahrscheinlichkeit ist gleich dem Verhältnis der Flächen des gelben Dreiecks (Fläche $1/16$) und des Quadrats (Fläche 4):
Rauschgebiete mit A = 1
$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) = \frac{1/2 \cdot 1/2 \cdot 1/4}{4}= {1}/{64} \hspace{0.05cm}.$$
  • Aus Symmetriegründen gilt gleichermaßen:
$${\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 ) = {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 )={1}/{64} \hspace{0.05cm}. $$


(4)  Bei gleichwahrscheinlichen Symbolen erhält man für die (mittlere) Fehlerwahrscheinlichkeit:

$$p_{\rm S} = {\rm Pr}({ \cal E} ) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{3} \cdot \left [{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_0 ) + {\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_1 )+{\rm Pr}({ \cal E}\hspace{0.05cm}|\hspace{0.05cm} m_2 )\right ]=$$
$$ \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{3} \cdot \left [{1}/{64} + {1}/{64} + 0 )\right ]= \frac{2}{3 \cdot 64} = {1}/{96}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.0104} \hspace{0.05cm}.$$


(5)  Nun ergibt sich eine kleinere mittlere Fehlerwahrscheinlichkeit, nämlich

$$p_{\rm S} = {\rm Pr}({ \cal E} ) = {1}/{4} \cdot {1}/{64} + {1}/{4} \cdot {1}/{64}+ {1}/{2} \cdot0 = {1}/{128}\hspace{0.1cm}\hspace{0.15cm}\underline {\approx 0.0078 } \hspace{0.05cm}. $$


(6)  Richtig ist JA. Beispielsweise ergäbe sich durch $I_1$: erster Quadrant, $I_0$: zweiter Quadrant, $I_2 \text{:} \ y < 0$ die Fehlerwahrscheinlichkeit $0$. Das bedeutet, dass die vorgegebenen Grenzen nur bei zirkulär symmetrischer WDF des Rauschens optimal sind, zum Beispiel beim AWGN–Kanal.