Aufgaben:Aufgabe 4.1Z: L–Werte des BEC–Modells: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
 
Wir betrachten das so genannte [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC| BEC&ndash;Kanalmodell]] (<i>Binary Erasure Channel</i>) mit
 
Wir betrachten das so genannte [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC| BEC&ndash;Kanalmodell]] (<i>Binary Erasure Channel</i>) mit
 
* der Eingangsgröße $x &#8712; \{+1, \, &ndash;1\}$,
 
* der Eingangsgröße $x &#8712; \{+1, \, &ndash;1\}$,
* der Ausgangsgröß4 $y &#8712; \{+1, \, &ndash;1, \, {\rm E}\}$, und
+
* der Ausgangsgröße $y &#8712; \{+1, \, &ndash;1, \, {\rm E}\}$, und
 
* der Auslöschungswahrscheinlichket $\lambda$.
 
* der Auslöschungswahrscheinlichket $\lambda$.
  

Version vom 6. Dezember 2017, 13:14 Uhr

BEC–Kanalmodell

Wir betrachten das so genannte BEC–Kanalmodell (Binary Erasure Channel) mit

  • der Eingangsgröße $x ∈ \{+1, \, –1\}$,
  • der Ausgangsgröße $y ∈ \{+1, \, –1, \, {\rm E}\}$, und
  • der Auslöschungswahrscheinlichket $\lambda$.


Hierbei bedeutet $y = {\rm E}$ (Erasure), dass der Ausgangswert $y$ weder als „$+1$” noch als „$–1$” entschieden werden konnte.

Bekannt sind zudem die Eingangswahrscheinlichkeiten

$${\rm Pr}(x = +1) = 3/4\hspace{0.05cm}, \hspace{0.2cm}{\rm Pr}(x = -1) = 1/4\hspace{0.05cm}.$$

Das Log–Likelihood–Verhältnis (kurz: $L$–Wert, englisch: Log Likelihood Ratio, LLR) der binären Zufallsgröße $x$ ist bei bipolarer Betrachtungsweise wie folgt gegeben:

$$L(x)={\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(x = +1)}{{\rm Pr}(x = -1)}\hspace{0.05cm}.$$

Entsprechend gilt für den bedingten $L$–Wert in Vorwärtsrichtung für alle $y ∈ \{+1, \, – \, {\rm E}\}$:

$$L(y\hspace{0.05cm}|\hspace{0.05cm}x) = {\rm ln} \hspace{0.15cm} \frac{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = +1)}{{\rm Pr}(y\hspace{0.05cm}|\hspace{0.05cm}x = -1)} \hspace{0.05cm}. $$

Hinweis:


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)