Aufgaben:Aufgabe 4.4Z: Ergänzung zur Aufgabe 4.4: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 35: Zeile 35:
 
{Nun gelte $n = 4$ und $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6$. Berechnen Sie nach der Gallager–Gleichung folgende Größen:
 
{Nun gelte $n = 4$ und $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6$. Berechnen Sie nach der Gallager–Gleichung folgende Größen:
 
|type="{}"}
 
|type="{}"}
${\rm Pr(blau) = Pr}[w_{\rm H}(\underline{x}) {\rm ist gerade}] \ = \ ${ 0.5192 3% }
+
${\rm Pr(blau) = Pr}[w_{\rm H}(\underline{x}) {\rm ist \ gerade}] \ = \ ${ 0.5192 3% }
${\rm Pr(rot) = Pr}[w_{\rm H}(\underline{x}) {\rm ist ungerade}] \ = \ ${ 0.5192 3% }
+
${\rm Pr(rot) = Pr}[w_{\rm H}(\underline{x}) {\rm ist \ ungerade}] \ = \ ${ 0.5192 3% }
 
$Q = {\rm Pr(blau)/Pr(rot)} \ = \ ${ 1.0799 3% }
 
$Q = {\rm Pr(blau)/Pr(rot)} \ = \ ${ 1.0799 3% }
  

Version vom 8. Dezember 2017, 09:30 Uhr

Hamming–Gewicht und Wahrscheinlichkeiten

Der Informationstheoretiker Robert G. Gallager hat sich bereits 1963 mit folgender Fragestellung beschäftigt:

  • Gegeben ist ein Zufallsvektor $\underline{x} = (x_1, \, x_2, \ ... \ , \, x_n)$ mit $n$ binären Elementen $x_i ∈ \{0, \, 1\}$.
  • Bekannt sind alle Wahrscheinlichkeiten $p_i = {\rm Pr}(x_i = 1)$ und $q_i = {\rm Pr}(x_i = 0) = 1 - p_i$ mit Inex $i = 1, \ ... \ , \ n$.
  • Gesucht ist die Wahrscheinlichkeit, dass die Anzahl der Einsen in diesem Vektor geradzahlig ist.
  • Oder ausgedrückt mit dem Hamming–Gewicht: Wie groß ist die Wahrscheinlichkeit ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$?


Die Grafik verdeutlicht die Aufgabenstellung für das Beispiel $n = 4$ sowie $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3$ und $p_4 = 0.6$.

  • Für die grün hinterlegte Zeile  ⇒  $\underline{x} = (1, \, 0, \, 0, \, 1)$ gilt $w_{\rm H}(\underline{x}) = 2$ und ${\rm Pr}(\underline{x}) = p_1 \cdot q_2 \cdot q_3 \cdot p_4 = 0.0084$.
  • Blaue Schrift bedeutet ein geradzahliges Hamming–Gewicht. Rote Schrift steht für „$w_{\rm H}(\underline{x})$ ist ungerade”.
  • Die Wahrscheinlichkeite ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ gerade}]$ ist gleich der Summe der blauen Zahlen in der letzten Spalte. Die Summe der roten Zahlen ergibt ${\rm Pr}[w_{\rm H}(\underline{x}) {\rm \ ist \ ungerade}] = 1 - {\rm Pr}[w_{\rm H}(\underline{x} {\rm \ ist \ gerade}]$.


Gallager hat das Problem in analytischer Weise gelöst:

$$\hspace{0.2cm} {\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} gerade} \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 + \pi]\hspace{0.05cm},$$
$${\rm Pr} \left [w_{\rm H}(\underline{x})\hspace{0.15cm}{\rm ist \hspace{0.15cm} ungerade} \right ] \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1/2 \cdot [1 - \pi]\hspace{0.05cm}.$$


Fragebogen

1

Wir betrachten den Vektor $\underline{x} = (x_1, \, x_2) \ \Rightarrow \ n = 2$ mit $x_i ∈ \{0, \, 1\}$. Wie groß ist die Wahrscheinlichkeit, dass $\underline{x}$ eine gerade Anzahl an Einsen beinhaltet?

$p_1 = 0.2, \ p_2 = 0.9 \text{:} \hspace{0.2cm} {\rm Pr}[{\rm gerades} \ w_{\rm H}] \ = \ $

2

Berechnen Sie die gleiche Wahrscheinlichkeit für $\underline{x} = (x_1, \, x_2, \, x_3) \ \Rightarrow \ n = 3$.

$... \ , \ p_3 = 0.3 \text{:} \hspace{0.2cm} {\rm Pr}[{\rm gerades} \ w_{\rm H}] \ = \ $

3

Nun gelte $n = 4$ und $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6$. Berechnen Sie nach der Gallager–Gleichung folgende Größen:

${\rm Pr(blau) = Pr}[w_{\rm H}(\underline{x}) {\rm ist \ gerade}] \ = \ $

${\rm Pr(rot) = Pr}[w_{\rm H}(\underline{x}) {\rm ist \ ungerade}] \ = \ $

$Q = {\rm Pr(blau)/Pr(rot)} \ = \ $

4

Wie groß ist der extrinsische $L$–Wert für das Symbol $i = 5$ beim SPC (5, 4, 2) mit $p_1 = 0.2, \ p_2 = 0.9, \ p_3 = 0.3, \ p_4 = 0.6, \ p_5 = 0.9$?

$L_{\rm E}(i = 5) \ = \ $

5

Wie änder sich $L_{\rm E}(i = 5)$, wenn man stattdessen von $p_5 = 0.1$ ausgeht?

$L_{\rm E}(i = 5)$ wird größer.
$L_{\rm E}(i = 5)$ wird kleiner.
$L_{\rm E}(i = 5)$ wird gegenüber Teilaufgabe (4) nicht verändert.


Musterlösung

(1) 


(2) 


(3) 


(4) 


(5)